Graduate students taking STAT 5084 should complete some "grad problems" over the course of the semester. There will be around six of these problems, and you'll need to do a good job on half of them.

The goal of this problem is to investigate the sampling distribution of autocorrelation coefficients r_k under the null hypothesis that the time series is white noise.

A white noise series $e_1, e_2, ..., e_T$ has autocorrelations r_k which are approximately i.i.d. normal with mean 0 and SD $1/\sqrt{T}$.

Check this by simulation. Randomly generate a white noise series with T = 100 and compute the acf. Extract the first $\ell = 20$ values of the acf as an ordinary vector. Now replicate this 1000 times to produce 1000 samples of each r_k for k from 1 to 20.

- 1. Make histograms for a few values of k to confirm the distribution $r_k \sim N(0, 1/\sqrt{T})$.
- 2. Check the correlation between a few choices of $k \neq k'$ to confirm the r_k are independent (or at least uncorrelated with each other).
- 3. For each of your 1000 simulated samples, compute the Ljung-Box statistic

$$Q^* = T(T+2) \sum_{k=1}^{20} \frac{r_k^2}{T-k}.$$

Plot the distribution of Q^* and confirm that it is approximately χ^2 with 20 DF.