Graduate students taking STAT 5084 should complete some "grad problems" over the course of the semester. There will be around six of these problems, and you'll need to do a good job on half of them.

The goal of this problem is to show that a k moving average "detects" linear trends. For simplicity, assume k is odd.

- 1. Let $T_t = a + bt$, where a and b are constants, and $t = \ldots, -2, -1, 0, 1, 2, 3, \ldots$ Show that the k-MA of T_t is T_t .
- 2. Suppose R_t are iid random variables with mean zero and variance σ^2 . Let A_t be the k-MA of R_t . Show that the expected value $E(A_t) = 0$ and the variance $Var(A_t) = \sigma^2/k$.
- 3. Let $Y_t = T_t + R_t$, and argue that the k-MA of Y_t approaches T_t for large k.