Propositional Calculus

Here is a definition of the formal system for propositional logic.

1. Symbols:

 A, B, C, D, \ldots, Z (and optionally, allow primes, A', A'', etc.)

 $\sim, \lor, \land, (, \cdot)$

and additionally the symbols \Rightarrow and \Leftrightarrow , which are only shorthand for their equivalent forms (defined below).

- 2. Well Formed Formulas
 - Any letter A, \ldots, Z is well formed (adding primes is also ok).
 - If x is WFF, then so is $\sim x$.
 - if x and y are WFF, then so is $(x \lor y)$.
 - if x and y are WFF, then so is $(x \wedge y)$.

3. Rules of Inference

- Separation
 - (a) From $(x \wedge y)$, form x.
 - (b) From $(x \wedge y)$, form y.
- Conjunction: From x and y, form $x \wedge y$.
- Double Negation: x and $\sim \sim x$ are equivalent.
- DeMorgan's Rules
 - (a) $\sim (x \lor y)$ is equivalent to $(\sim x \land \sim y)$.
 - (b) $\sim (x \wedge y)$ is equivalent to $(\sim x \vee \sim y)$.
- Modus Ponens: From x and $x \Rightarrow y$, form y.
- Deduction: Given a sequence of rules of inference that lead from x to y, form $x \Rightarrow y$.
- Definition of \Rightarrow : $x \Rightarrow y$ is equivalent to $(\sim x \lor y)$.
- Definition of $\Leftrightarrow: x \Leftrightarrow y$ is equivalent to $(x \Rightarrow y) \land (y \Rightarrow x)$.
- 4. Axioms: This system has no axioms.

Some Tautologies

Using Deduction, the rules of inference give rise to tautologies:

- Separation (a): $(P \land Q) \Rightarrow P$.
- Separation (b): $(P \land Q) \Rightarrow Q$.
- Conjunction: $(P \Rightarrow (Q \Rightarrow (P \land Q))).$
- Double Negation: $P \Leftrightarrow \sim \sim P$.
- DeMorgan (a): $\sim (P \lor Q) \Leftrightarrow (\sim P \land \sim Q).$
- DeMorgan (b): $\sim (P \land Q) \Leftrightarrow (\sim P \lor \sim Q).$

In fact, a different approach to defining the formal system is to have only one Rule of Inference, Modus Ponens, and a bunch of axioms corresponding to these tautologies

Here are some fundamental tautologies:

- Addition: $P \Rightarrow (P \lor Q)$.
- Commutativity of \wedge : $(P \wedge Q) \Leftrightarrow (Q \wedge P)$.
- Commutativity of \lor : $(P \lor Q) \Leftrightarrow (Q \lor P)$.
- Commutativity of \Leftrightarrow : $(P \Leftrightarrow Q) \Leftrightarrow (Q \Leftrightarrow P)$.
- Associativity of \wedge : $((P \land Q) \land R) \Leftrightarrow (P \land (Q \land R))$.
- Associativity of \lor : $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$.
- Distributivity 1: $(P \land (Q \lor R)) \Leftrightarrow ((P \land Q) \lor (P \land R)).$
- Distributivity 2: $(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R)).$
- Material Bi
conditional: $((P \Leftrightarrow Q) \Leftrightarrow ((P \land Q) \lor (\sim P \land \sim Q)))$

And a few more, which are more subtle:

- Transposition: $(P \Rightarrow Q) \Leftrightarrow (\sim Q \Rightarrow \sim P)$.
- Modus Tollens: $((P \Rightarrow Q) \land \sim Q) \Rightarrow \sim P$.
- Hypothetical Syllogism: $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R).$
- Disjunctive Syllogism: $((P \lor Q) \land \sim Q) \Rightarrow P$.