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Every fall, millions of Americans enter betting pools to pick winners of the weekly NFL football games. In the spring,
NCAA tournament basketball pools are even more popular. In both cases, teams that are popularly perceived as “favorites”
gain a disproportionate share of entries. In large pools there can be a significant advantage to picking upsets that differentiate
your picks from the crowd.
In this paper, we present a model of betting pools that incorporates pool participant behavior. We use the model to derive

strategies that maximize the expected return on a bet in both football pools and tournament-style pools. These strategies
significantly outperform strategies based on maximizing score or number of correct picks—often by orders of magnitude.
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1. Introduction
In a betting pool, players pay a fixed bet to make predic-
tions about future events, and the pooled bets are paid to
the player or players whose predictions prove to be most
accurate. In sports betting pools, there is often a disconnect
between the fraction of contest entrants choosing a team,
and that team’s actual probability of winning. Frequently,
this takes the form of an “overperception of the favorites,”
where a team with a slight edge is picked by a large major-
ity of pool entrants.
In March 2003, for example, approximately one million

people entered ESPN’s Tournament Challenge, an online
contest to predict the outcome of the NCAA Men’s Basket-
ball Tournament. That year, Kentucky finished the regular
season with a 23-game winning streak and was the clear
favorite, but the NCAA tournament is a 64-team single-
elimination tournament notorious for upsets. Nevertheless,
51% of the ESPN pool participants predicted the Kentucky
Wildcats as champion.
Kentucky lovers faced an uphill battle to win that pool;

they needed Kentucky to win and then still had to beat about
a half million other entrants at picking the rest of the games.
Potentially, a better strategy for winning was to pick an
underdog champion and hope to be part of a much smaller
group—only 25,000 entrants correctly chose eventual cham-
pion Syracuse.
Less important but equally striking were the four “8-9”

games that year, which match the two middle seeds in each
group of 16. Historically, these games are toss-ups, but in
all four matchups the Tournament Challenge entrants had
anointed one team the favorite by at least a two-to-onemargin.
This phenomenon has not gone unnoticed. In a limited

study of pools for the 1993 NCAA tournament, Metrick
(1996) concluded that #1 seeds (the top four teams) were

overbacked by pool entrants, and that possible profit oppor-
tunities were available for betting lower seeds.
Betting on weaker teams (underdogs) is generally not

the way to achieve a high average score. However, bet-
ting pools are about winning a share of the pot. That is,
there is a crucial distinction between maximizing expected
score and maximizing expected return. A good score is
worthless if most of the pool entrants also score well,
whereas a mediocre score can win a pool when many
games are upsets. In a large pool, picking extra underdogs
can substantially increase the chances of a first-place fin-
ish and a return on the bet. The subtle problem is to find
the balance between choosing high-probability events (bet-
ting on favorites) and going against the crowd (betting on
underdogs).
The sports betting pool is an instance of a more general

competitive setting, in which competitors must select from
among a number of choices subject to two broad condi-
tions: first, that all competitors are in general agreement as
to which choices are desirable; second, that the benefits of
a particular choice decrease with an increase in the number
of competitors making that choice.
As an example, airline routes with high passenger traffic

are desirable for their high revenue. However, as the num-
ber of airlines flying a route increases, the competition for
airport gates and ticket-pricing battles decrease the benefits
to each airline.
Another example is the combinatorial auction, in which

every bidder bids on packages of items requiring an all-or-
nothing outcome. Bids for packages that include the most
desirable items will face more competition and are less
likely to be satisfied.
Sports betting pools provide a model example of such a

situation, and have the advantage that the key variables are
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readily measurable, allowing for precise quantitative anal-
ysis. One is able to test and verify the theoretical model,
giving concrete evidence that less desirable choices can in
fact lead to practical advantages in a competitive situation.
Previous works (Kaplan and Garstka 2001, Breiter and

Carlin 1997) discuss finding NCAA tournament picks that
maximize one’s expected score, but are not concerned with
opponent behavior and therefore miss the competitive nature
of the situation. More recently, Kaplan and Magazine (2003)
present a simple model of opponent behavior, but in the
context of a nontraditional NCAA basketball pool where
entrants bid to “own” certain teams.
In this paper, we propose a complete probability model

for betting pools (§2) that applies to traditional NFL foot-
ball pools and NCAA tournament-style pools. The model
incorporates probable game outcomes as well as infor-
mation about pool participant behavior. We consider the
optimization problem of finding picks b that maximize ex-
pected return E�b� on a bet of a fixed amount. One of the
more appealing aspects of the problem is that solutions are
sensitive to the number of opponents in the pool, generally
picking more conservatively in small pools and choosing
more upsets in larger pools.
For football pools, we give an an exact formula for the

expected return E�y� for any picks y (Theorem 3.3). Ex-
haustive search or other standard search algorithms can
then find optimal picks b.
We applied these techniques to a number of online NFL

pools for the 2004–2005 season (§3.3). We found that pool
participants overbet favorites, leaving plenty of room for
strategic improvements. In larger (thousands of players)
pools, crowd avoidance is essential—picking all favorites
is one of the few losing bets.
For tournament pools, such as NCAA basketball, The-

orem 4.1 and §5.2 describe a method to approximate ex-
pected return. The approximation relies on the observation
that pool participant scores are approximately normally dis-
tributed. One can then search for picks that maximize the
approximate value.
We were able to use these techniques to analyze (retroac-

tively) the 2004 NCAA men’s basketball tournament and
to enter NCAA pools in 2005. The best picks we found
had expected returns that were orders of magnitude better
than score-maximizing strategies. The results, in §5.4, mir-
ror the results with football pools in that larger pools call
for more upset picks. It also appears (e.g., Table 5) that one
should pick conservatively in early rounds, choosing upsets
in later rounds and the final four.

2. The Pool Model
In a sports betting pool, participants attempt to predict the
winners of a collection of sporting events, such as football
or basketball games. Their predictions, known as “picks,”
are given to the pool organizer, along with a fixed bet. After
the games are played, each participant receives a score,

with points awarded for correct predictions. Players with
the most points receive prizes or a share of the pooled bets.
In this section, we describe a simple probability model

for a sports betting pool that encompasses participant be-
havior, game outcomes, and pool payoff schemes. We then
state the optimization problem addressed by this paper.

2.1. Pool Payoff Schemes

Pool bets are normalized so that each participant con-
tributes a bet of one. Real pool payout schemes vary widely,
although a simple scheme is to award all of the money to
the player with the highest score, and in case of a tie to
split the pot equally between the tied players. We call this
the standard payoff scheme. This scheme is also a model
for a winner-take-all pool with a tiebreaker that is reason-
ably independent from the game picks. For example, many
football pools break ties with predictions about scoring in
the Monday night game.
The techniques in this paper are applicable to a wide

variety of payout schemes, but greater generality would
introduce notational and computational complexity, which
we chose to avoid. Instead, we assume throughout the paper
that all pools use the standard payoff scheme.
The pool entrants consist of N competitors or opponents

plus one distinguished player, for a total of N + 1 partici-
pants. The standard payoff scheme means that players who
tie for first split the N + 1-sized pot equally.

2.2. Pool Probabilities

The fundamental assumption in this paper is that each
opponent makes their picks randomly and independently
for each game. To be more precise, for each matchup of two
teams i and j , there is a number pij called the pool proba-
bility for that matchup. A given opponent picks the winner
in the i versus j match by choosing team i with probability
pij and team j with probability 1−pij . An individual oppo-
nent picks each games’ outcome independently of his picks
for every other game. In addition, each opponent makes
picks independently of every other opponent. The probabil-
ities pij are fixed for the entire pool so that all opponents
are making picks according to identical distributions.
For tournament pools we assume that opponents pick

using a Markov process, where they first pick Round 1
winners to get Round 2 matchups, then independently pick
the Round 2 winners, and so on to the champion. Although
humans may not actually pick teams in this way, simula-
tions presented in §5.5 show that picks made according to
the model behave comparably to human-made picks.
Perhaps surprisingly, it is easy to find excellent data to

use for pool probabilities. There are a number of large
(over 100,000 player) free pools on the Internet, and some
publish statistics on picks. For example, ESPN’s Pigskin
Pick’em gives the percentage of players choosing each
football game for the week. For the NCAA tournament,
Yahoo Tournament Pick’em has published the percent-
age of players picking each team to reach each round.
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After the games begin, most online pools allow inspec-
tion of all participant picks. We were able to automatically
retrieve 500,000 complete NCAA basketball poolsheets
from ESPN’s 2004 Tournament Challenge to use as sample
data for retroactive analysis.

2.3. Actual Probabilities

The second main assumption of the model is that for each
pair of teams i and j , there is a known actual probability aij

that team i beats team j , and that the results of one game
are independent of other games, and independent of earlier
round games (in the context of elimination tournaments).
To estimate actual probabilities, there are many alterna-

tives. There are a number of computer models on the Inter-
net, such as the Sagarin rankings (Sagarin 2004) and Massey
rankings (Massey 2004). There are also various approxima-
tions to the NCAA basketball RPI, the official rating system
used by the NCAA when seeding teams in the tournament.
Statistical models such as Bradley and Terry (1952), Boulier
and Stekler (1999), Caudill (2003), and Kvam and Sokol
(2006) attempt to predict outcomes in basketball tourna-
ments. One could also derive data from “Las Vegas” odds.
In Kaplan and Garstka (2001), there is a detailed discus-
sion of possibilities in the context of the NCAA basketball
tournament.
It might also be possible to use pool probabilities to

derive the actual probabilities based on empirical data from
past pools. Yet another alternative for the NCAA basketball
tournament is to use the historical performance of seeds.
The accuracy of seeding as a predictor is examined in
Caudill and Godwin (2002).
There are really two issues here: finding accurate aij , and

making the best use of that knowledge. This paper is only
concerned with the second problem, and will give optimal
results if the aij really are the actual probabilities of the
games. On the other hand, one wants methods that are rel-
atively stable. We give some evidence in §§3.5 and 5.6 that
the methods in this paper will generate reasonable picks for
a variety of aij .

2.4. The Optimization Problem

The goal of the remainder of the paper is to understand
which picks maximize the expected return on a bet. The
inputs to the problem are:
• N , the number of competitors in the pool.
• Actual probabilities aij that govern the outcomes of

the games.
• Pool probabilities pij that describe behavior of the

competitors in the pool.
Together with the assumptions in the previous three sec-

tions, these data describe a model sports betting pool where
both the picks of all competitors and the outcome of the
games are random variables. These variables range over the
set � of all possible outcomes of the games.
The set � is finite—for example, in a 16-game foot-

ball pool, ��� = 216. There is one random variable x	 ∈ �

for each competitor (	 = 1 
 
 
N ) giving that competitor’s
picks. There is one random variable v ∈ � that represents
the outcome of the games.
Now fix y ∈ �. A pool consists of N + 1 players:

N competitors who each bet one on their picks x	 and one
distinguished player who bets one on y. The outcome v
then determines a winner or group of winners of the pool,
and they split the N + 1-sized pot. The share of the pot
(∈�0�N + 1) received by the distinguished player is the
return from betting one on y. Note that the value of a bet
is the return minus the bet amount. In this paper, we will
always use return instead of value because bets will always
be one, and including the bet cost in every formula would
lead to a worthless abundance of −1s.
The decision variable for the problem is y ∈ �. More

traditionally, one could think of y as a collection of �0�1�-
valued decision variables, one for each game. Because the
game outcomes and opponent picks are random, the return
from betting one on y is random. To avoid extra notation,
we simply write E�y� for the expected value of the return
from betting one on y. The optimization problem is to find
y that maximizes E�y�.

3. Football Pools
A typical office football pool covers one weekend of NFL
football, which consists of 14–16 games. Before the week-
end, each player chooses a winner for each of the games.
When the games are finished, players are scored based on
their number of correct predictions. We use the term foot-
ball pool for any pool that requires players to make pre-
dictions for multiple independent two-outcome events.
The pool consists of g games, and in each game one team

is arbitrarily designated the “favorite,” whereas the other
team is known as the “underdog.” The favorite in game i
has probability ai ∈ �0�1 of winning, which we will call
the actual probability for game i. Each of your opponents
bets by choosing the favorite in game i with probability
pi ∈ �0�1, which we call the pool probability for game i.
The terms “favorite” and “underdog” should be read with

care because the values of ai and pi may not both lie on
the same side of 0
5. Generally, we designate the favorite
so that ai � 0
5, and use the terms “actual favorite” and
“pool favorite” when needed for clarity.

3.1. Examples

We give some special cases and examples to illustrate the
complexity of the expected return optimization problem.

Example 3.1 (One-Game Pools). Suppose that g = 1,
and let a= a1 �

1
2 and p= p1. Against one opponent, bet-

ting the actual favorite returns p+ 2a�1− p�, and betting
the underdog returns �1−p�+2�1−a�p. Thus, one should
bet the actual favorite when N = 1.
Now consider the limit as N → �, and assume that

p 	= 0�1. Because the probability goes to one that there will
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be opponents betting on each team, the return on a bet
is zero unless the pick is correct. Betting the favorite is
correct with probability a, and splits the N + 1-sized pot
with Np opponents. As N →�, the expected return is then
a/p. Similarly, the expected return for an underdog bet is
�1−a�/�1−p�. From this, we see that the favorite is better
when a > p and the underdog is better when a < p. We
call this strategy betting the edge.
In general, for a one-game pool with N competitors,

the threshold between betting the favorite and betting the
underdog is given by

a=
(
1+

(
1−p

p

)(
1− �1−p�N

1−pN

))−1
� (3.1)

which interpolates between a = 1
2 and a = p as shown in

Figure 1 for N = 1� 
 
 
 �15.

One might hope to understand a multigame pool as a
collection of unrelated one-game pools. However, things
are not so simple. Tricky parity issues can enter the pic-
ture when making picks. For example, there are times one
should bet the actual underdog even when all opponents
are picking the underdog as well:

Example 3.2. Consider a pool with two games, with both
actual probabilities just a bit more than 0.5, and both pool
probabilities close to zero. The actual favorites are then FF,
and UU is what everyone is betting. For a bet of FF, the
probability of getting both games right and winning the
pool is about 0.25. The probability of getting one game
right and tying with everyone is about 0.5. The expected
return is about N/4. However, a bet of FU or UF is sure
to tie on the U game and has a just better than 50% shot
at the F game, giving a return of about N/2.

To get a feel for the complexity of the picking problem,
consider Figure 2. These pictures describe optimal strate-
gies for pools with equivalent games, that is, pools where
ai = a and pi = p for all i. The values of a and p vary
along the axes, and the point at �a�p� is colored for the
optimal number of favorites to pick (with black meaning
all underdogs and white meaning all favorites).
With four games and three competitors, we see the parity

issue of Example 3.2 as a tail of gray extending above the

Figure 1. Thresholds for the one-game pool.
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Figure 2. Equivalent games.
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a = 0
5 line. In that region, the best pick is three instead
of four favorites for parity reasons. With five games and
11 competitors, all six possible bets do show up as optimal
for some values of a and p, and the complicated geometry
of the regions is apparent.

3.2. Expected Return

In this section, we compute an exact formula for E�y�, the
expected value of the return from betting one on picks y.
We need some notation. For picks (or outcomes) x and y,

let x∧ y be the number of games for which x and y agree.
Given probabilities pi for the g games, let P�x� be the
probability that one opponent picks x exactly. That is,

P�x�=
g∏

i=1




pi if the favorite is picked to

win game i in x�

�1−pi� if the underdog is picked to

win game i in x


Similarly, A�x� is the actual probability that outcome x
occurs.
Summing over all possible outcomes � of the games, the

expected return for a bet on y is

E�y�=∑
x∈�

A�x�E�y � x�� (3.2)

where E�y � x� is the expected return on y given the out-
come x. The quantity E�y � x� depends on y only as far as
the score s = x∧ y. Therefore, let � �x� s� be the expected
return, given an outcome of x and score s. Then,

E�y�=∑
x∈�

A�x�� �x�x∧ y�
 (3.3)

We now turn to the problem of computing � �x� s�.
With the standard payoff assumption, the return is nonzero
when s is the highest score or s is tied with some number
of opponents. The first step in the computation is to study
a single opponent.
Let ��x� s� and ��x� s� denote the conditional probabil-

ity that a given opponent scores equal to s or less than s,
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given that outcome x actually occurred. These functions
depend implicitly on the pool probabilities pi.
Then, we have

��x� s�= ∑
z∈�� z∧x=s

P�z�� (3.4)

��x� s�=
s−1∑
k=0

��x� k�= ∑
z∈�� z∧x<s

P�z�
 (3.5)

To get an expression for � , we compute the probability
of tying with k competitors and beating the rest, then divide
by k+ 1, the number of winners splitting the pot:

� �x� s�=
N∑

k=0

N + 1
k+ 1

(
N

k

)
��x� s�N−k��x� s�k (3.6)

=
N∑

k=0

(
N + 1
k+ 1

)
��x� s�N−k��x� s�k (3.7)

= ���x� s�+��x� s��N+1−��x� s�N+1

��x� s�

 (3.8)

The last equality follows from the binomial formula.
Putting (3.8) together with (3.3) proves the following:

Theorem 3.3. In a football pool with N competitors and
the standard payoff scheme, the expected return for a bet
on games y is

E�y�=∑
x∈�

A�x�
���x�x∧y�+��x�x∧y��N+1−��x�x∧y�N+1

��x�x∧y� 


(3.9)

We saw in Example 3.1 that the optimal strategy for a
one-game pool interpolates between betting the actual fa-
vorites and betting the edge, as N goes from 1 to �. For
multigame pools, even the one-opponent case is difficult.
However, we have the following:

Proposition 3.4. For a g-game football pool, let e ∈ �
pick the edge in every game. That is, e picks the favorite in
game i when ai � pi and the underdog when ai < pi. Then,
for any picks y ∈ �, limN→�E�e�� limN→�E�y�.

Proof. For any y, limN→�E�y� = A�y�/P�y� because y
has probability A�y� of being perfect and thus splitting
the N + 1-sized pot with N ·P�y� opponents. The quantity
A�y�/P�y� is maximal for y= e. �

Computing E�y� for a bet y requires exponential time.
More precisely, the expression in (3.9) has O�4g� terms.
A technical improvement described in Appendix A.1 re-
duces the number of computations to O�2g�, without which
an NFL football pool would be intractable. In §4, we de-
scribe a technique to compute an approximation of E�y�
quickly, which must be used for pools with a large number
of games.
For NFL football pools, it is reasonable to perform an ex-

haustive search of all possible bets Y . However, one could

also apply standard search techniques, such as greedy or
genetic algorithms. As a concrete example, declare two bets
y and y′ to be k-neighbors if they differ in exactly k games.
In our experiments, a hill-climbing search terminating at a
point maximal among its 2-neighbors has never failed to
find the best picks.

3.3. The 2004–2005 NFL Season

We tested our methodology during the 2004–2005 NFL
season by entering 4–6 free online pools per week, with
the number of competitors N varying from approximately
400 to approximately 200,000. All pools broke ties using
the Monday night football score in some form or another.
These pools were free, but the model in this paper still
applies to find optimal bets—the payoffs are simply scaled.
In particular, the ESPN Pigskin Pick’em pool, with 170,000
competitors, was offering a fine ESPN logo hat as their
weekly prize.
ESPN’s pool was our primary source of pool probabil-

ities pi. Each Tuesday, ESPN released the percentages of
competitors picking each game of the next week’s pool,
and then updated this information over the course of the
week.
For actual probabilities ai, we used computer-generated

predictions made weekly by Massey (2004). Massey ratings
have a published algorithm that is mathematically straight-
forward and depends only on game scores, venues, and
dates.
Table 1 summarizes the Massey-predicted probabilities

ai and the ESPN competitor percentages pi. Each row
shows the number of games that had ai (respectively, pi)
in a given range, and the percentage of those games that
had the predicted result. ESPN competitors had a slightly
better record overall than the Massey computer model, but
the most striking feature of Table 1 is that more than half
the games had a favorite that attracted over 80% of the
competitors.

Table 1. Actual and pool probabilities for the NFL
2004–2005 season.

Massey actual ESPN pool

Prediction Correct Correct
(%) No. of games (%) No. of games (%)

50–55 53 56
6 14 50
0
55–60 41 48
8 14 42
9
60–65 50 64
0 23 39
1
65–70 35 62
9 21 66
7
70–75 35 74
3 24 70
8
75–80 27 66
7 23 56
5
80–85 6 100
0 36 69
4
85–90 7 85
7 32 53
1
90–95 2 50
0 35 77
1
95–100 0 — 34 82
4

Totals 256 62
9 256 63
7
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Table 2. Examples of NFL football picks.

NFL 2004–2005 Week 9 NFL 2004–2005 Week 14

Pool Pool ESPN Massey Pool Pool ESPN Massey
favorite underdog p a favorite underdog p a

NYG CHI∗ 0
968 0
72 DEN MIA∗ 0
977 0
75
SEA SF∗ 0
949 0
58 IND HOU∗ 0
961 0
72
NYJ BUF∗ 0
914 0
57 GB DET∗ 0
957 0
74
SD∗ NO 0
900 0
76 BUF∗ CLE 0
954 0
75
KC TB∗ 0
891 0
48 NE∗ CIN 0
951 0
87
DET WAS∗ 0
882 0
65 PHI∗ WAS 0
944 0
77
BAL∗ CLE 0
885 0
74 ATL OAK∗ 0
932 0
66
IND∗ MIN 0
792 0
69 BAL∗ NYG 0
930 0
79
DEN∗ HOU 0
786 0
64 ARZ SF∗ 0
899 0
65
CAR∗ OAK 0
759 0
65 DAL NO∗ 0
891 0
63
NE STL∗ 0
750 0
61 JAX CHI∗ 0
851 0
65
DAL CIN∗ 0
557 0
43 SD∗ TB 0
848 0
68
MIA∗ ARZ 0
513 0
66 MIN∗ SEA 0
843 0
66
PIT PHI∗ 0
541 0
42 PIT∗ NYJ 0
804 0
65

CAR∗ STL 0
690 0
64
KC TEN∗ 0
590 0
47

Upsets (pool opinion): 7 Upsets (pool opinion): 2
Correct picks: 9 Correct picks: 8

Notes. Actual game winners are bold. Optimal picks for N = 170�000 are starred∗.

Each week, using N = 170�000, we computed E�y� for
every possible bet y. The picks b that maximized E�b� will
be called the “optimal picks.” Because the optimal picks
depend on N , we had to repeat the search for various N to
enter each week’s collection of pools. With our implemen-
tation, searching all possible bets for a given N took about
10 minutes for 14-game weeks and about four hours for
16-game weeks. To save time, we used the hill-climbing
search described above for values of N 	= 170�000.
Two example weeks from 2004 are shown in Table 2.

The first two columns show the teams in each game, with
the ESPN pool favorite on the left. The optimal picks (for
N = 170�000) are starred, and the actual game winners are
shown in boldface. The two numeric columns are the per-
centage of ESPN competitors picking the pool favorite and

Table 3. Summary of results for the NFL 2004–2005 season.

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Games 16 16 14 14 14 14 14 14 14 14 16 16 16 16 16 16 16
Correct picksa 9 8 3 3 7 4 5 9 9 8 6 5 9 9 6 7 8
Opp. averageb 8.5 8.7 8.7 7.6 7.7 9.2 7.1 7.5 7 8 11.2 10.2 9.3 10.8 8.9 9.7 8
Exp. returnc 209 226 83 331 71 118 195 86 294 55 392 115 186 142 193 58 134
Upset picksd 9 11 7 8 10 9 9 9 8 10 12 13 8 8 11 10 10
Upsetse 6 5 4 7 7 3 6 8 7 6 3 4 5 3 6 4 8
Winnerf 16 15 14 14 14 14 13 14 13 14 16 15 15 16 16 16 16
No. Tiedg 1 10 36 3 3 � 50 2 2 3 8 � 50 � 50 10 17 1 3 9

aMaximum return picks b with ai from Massey, pi from ESPN, and N = 170�000.
bAverage score of ESPN Pigskin Pick’em participant.
cCalculated expected return E�b� of the week’s picks.
dPicks in b against the pool favorites.
eUpsets that actually occurred, according to pool favorites.
fWinning score for ESPN Pigskin Pick’em.
gPlayers tied with winning score.

Massey’s prediction for the probability of the pool favorite
winning.
In Week 9, there were big upsets, and in all pools both

the average and winning scores were low. The optimal
picks in the 9,000-person CBS Sportsline pool scored 10
out of 14 (these picks were the same as those in Table 2
except with NE picked over STL). This was our best week,
and in the CBS pool we finished two points behind the
winner, tied for 19th place. Week 14 had few upsets, and
the optimal picks did poorly although average and winning
scores were high.
Table 3 summarizes weekly results for the 170,000-com-

petitor ESPN Pigskin Pick’em pool. The main differences
for smaller pools were relatively lower scores for winners,
and lower estimates of expected return. For N = 9�000, the
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Figure 3. Distribution of expected return values for all 16,384 possible picks for Week 7.
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expected return for optimal picks ranged from 16 to 74 with
an average of 41 over all 17 weeks. For N = 50, expected
return ranged from 2.26 to 7.17, with an average of 3.87.
Unfortunately, with only 17 weeks per year for testing, one
needs to wait quite a while for expected returns to pay off.
For example, one only needs to win a 9,000-person pool
about once every 15–20 years to achieve a return of 40.
It should be clear from the data that the purpose of the

optimal picks is not to get a high score from week to week.
In fact, the N = 170�000 optimized picks went against
Massey recommendations in 44% of the games, meaning
they picked an average of 6.6 actual underdogs per week,
ranging from a low of 2 to a high of 8. The picks went
against the ESPN pool favorites 63% of the time, an aver-
age of 9.5 games per week.

3.4. Picking Strategies

For a comparison of various picking strategies, consider
Figure 3. Each picture is a frequency distribution of ex-
pected returns for all of the 16,384 possible bets in Week 7,
first for N = 50, then N = 9�000, and then N = 170�000.
The surprising thing about these distributions is that most
of the 16,384 possible picks are good, meaning E�x� > 1
for most bets x. The pool is a zero-sum game, so this indi-
cates that almost every opponent is making one of the small
number of bad picks. To double check this remarkable
conclusion, we gathered 24,000 poolsheets from ESPN’s
Pigskin Pick’em for Week 7. We found that the top 25
most popular picks (which included all picks chosen by

Figure 4. 2004 NFL picks.
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at least 0.5% of the participants) accounted for 62% of the
sample.
The upshot is that once football pools get large, crowd

avoidance is crucial—even picking at random is better
than picking lots of favorites. To make this more precise,
we calculated the expected return for all possible picks
over the entire season, and found that randomly selected
picks had an average weekly expected return of 23.4 when
N = 170�000. The optimal picks b varied from 3.4–28
times better than random over the 17-week season, plenty
of reason to search for them.
In practice, finding good picks may not require much

sophistication. The theory is complicated because optimal
picks cannot be made on a game-by-game basis. That is,
values of ai and pi do not by themselves determine the
best pick in game i (Example 3.2 and Figure 2). However,
Figure 4 shows that this rarely matters in practice.
Figure 4 summarizes the 2004-2005 NFL season optimal

picks for pools with 170,000 and 50 competitors. There is
one dot for each of the season’s 256 games. Each dot is
positioned at the �p�a� coordinates for the corresponding
game, and is shown black when the optimal picks chose
the actual favorite and is shown white for the underdog.
The striking feature of these figures is the nearly clean

separation into a favorite zone and an underdog zone. Using
these charts, one could make a decent set of picks by plot-
ting the weeks’ games on the chart and picking by zone
on a game-by-game basis. It would be interesting to find
a theoretical (or even empirical) formula for the apparent
separating curve for general N .
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3.5. Sensitivity to Input Data

The optimal picks are not sensitive to small changes in N .
Figure 4 gives an indication of how large changes in N
affect the picks: There is a gradual switching of some picks
from favorites to underdogs as N grows.
To test dependence on ai, we repeatedly chose new val-

ues ãi uniformly randomly from the interval �ai−0
01� ai+
0
01. We then took the optimal picks b for each week
and computed Ẽ�b� using �ãi�

g
i=1 as actual probabilities.

The resulting values of Ẽ�b� were approximately normally
distributed with mean E�b�. The average weekly coeffi-
cient of variance for Ẽ�b� was 2.1% for N = 50, 3.5%
for N = 9�000, and 4.2% for N = 170�000. Changing to
ãi ∈ �ai −0
05� ai +0
05 resulted in a five-fold increase in
coefficient of variance, almost exactly.
Running the same test with pi using p̃i ∈ �pi−0
01� pi+

0
01 gave 1.2% for N = 50, 3.5% for N = 9�000, and
5.4% for N = 170�000. The same five-fold increase was
observed when using pi ± 0
05. Note that in small pools,
variations in ai have more impact, whereas in large pools,
variations in pi make a bigger difference. This reinforces
the philosophy that small pools are about accurate predic-
tions, whereas large pools are about crowd avoidance.
Values of ai could easily be off by more than ±5%,

and therefore computed values of expected return should
be read with some caution. On the other hand, the rela-
tive quality of picks appears to be more stable than the
actual value of E. Figure 4 suggests that in practice, val-
ues of �ai� pi� away from the favorite/underdog division do
not need to be particularly accurate. As a further test, we
searched for optimal picks b̃ using input data perturbed by
up to ±0
05 as above. We then calculated the position of
b̃ among all 16,384 picks ranked using the original input
data. Repeating this test 20 times for each of the 14-game
weeks, the ranks varied from 1 to 4,412 (out of 16,384),
with a median of 6.

4. Normal Approximation
This section describes an approximation Enorm to the
expected return on a bet, using the assumption that player
scores are random variables with normal distributions.

4.1. Expected Return

Let the random variables �X	�
N
	=1 be the scores of the

N competitors in the pool, and let the random variable Y
be the score for a fixed set of picks y.
A player’s score is a sum of scores for the individual

games in the pool. These individual game scores have bi-
nomial distributions, but in a pool with sufficiently many
games, the central limit theorem implies that their sum is
approximately normally distributed. In this section, we as-
sume that X	 and Y are normally distributed and derive a
method for evaluating the quality of the picks y.

Because each opponent is assumed to follow the same
strategy, the mean and variance of X	 and of X� coincide
for all 	�� ∈ 1� 
 
 
 �N .
Define the random variables W	 =X	−Y , 	= 1� 
 
 
 �N .

The idea is that for the bet y to win anything, all the W	s
must be nonpositive. Let

�=��W	�=��X	�−��Y �� (4.1)

�2 = �2�W	�= �2�X	�+�2�Y �− 2 cov�X	�Y �� (4.2)

c= cov�W	�W��

= cov�X	�X��+�2�Y �− 2 cov�X	�Y �
 (4.3)

The next theorem measures the quality of the bet y en-
tirely in terms of �, �2, and c. This means that with the
normality assumption, all of the pool information about y,
opponent perceptions, and actual probabilities of games
boil down to just three numbers! The computation of �,
�2, and c from y and the pool data is done in §4.2 for
football pools and in §A.2 for elimination tournaments. For
now, we assume that �, �2, and c are known.

Theorem 4.1. For a fixed set of picks y, put �, �2, and c
as above. Let

!m�t�=
m−�−√

ct√
�2− c


 (4.4)

The probability that picks y will bet the sole winner in a
pool with N opponents is approximately

Prob�y is the sole winner�

=
∫ �

−�
$�!−0
5�t��

N%�t�dt
 (4.5)

In a pool with the standard payoff scheme, the expected
return on a bet of 1 is approximately

Enorm�y�=
∫ �

−�

[
$�!0
5�t��

N+1−$�!−0
5�t��N+1

$�!0
5�t��−$�!−0
5�t��

]
%�t�dt


(4.6)

Here %�t� = �2'�−1/2e−t2/2 is the probability distribution
function (p.d.f.) for a standard normal random variable,
and $�t�= 1

2 �1+ erf�t/
√
2�� is the associated cumulative

distribution function (c.d.f.).

Remark. All the 0.5s in Theorem 4.1 come from continu-
ity corrections.

Proof. Following Dunnett and Sobel (1955), we
let Z1� 
 
 
 �ZN � T be independent standard normal random
variables, and write

W	 =
√
�2− cZ	 +

√
cT +� (4.7)

for 	= 1� 
 
 
 �N . Now,

W	 �m ⇐⇒ Z	 �
m−�−√

cT√
�2− c

= !m�T �� (4.8)
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and we can compute the probability:

Prob�∀	+ W	 �m�

=
∫ �

−�

∫ !m�t�

−�
· · ·

∫ !m�t�

−�
%�z1� · · ·%�zN �%�t�dz1 · · · dzN dt

(4.9)

=
∫ �

−�
$�!m�t��

N%�t�dt
 (4.10)

The probability that picks y win the pool outright is
Prob�∀	+ W	 �−0
5� (where −0
5 is a continuity correc-
tion to zero), and this establishes (4.5).
More generally, the probability of tying with the first k

competitors and beating the rest is given by

Qk = Prob�W	 ∈ �−0
5�0
5�	= 1 
 
 
 k�

W	 �−0
5�	= k+ 1 
 
 
N � (4.11)

=
∫ �

−�

∫ !−0
5�t�

−�
N−k· · ·

∫ !−0
5�t�

−�

∫ !0
5�t�

!−0
5�t�

k· · ·
∫ !0
5�t�

!−0
5�t�
%�z1�

· · · ·%�zN �%�t�dz1 · · ·dzN dt (4.12)

=
∫ �

−�
��$�!0
5�t��−$�!−0
5�t���

k

·$�!−0
5�t��
N−k%�t�dt
 (4.13)

The expected return on a bet of one with picks y is then

Enorm�y�=
N∑

k=0

N + 1
k+ 1

(
N

k

)
Qk

=
∫ �

−�

[ N∑
k=0

N + 1
k+ 1

(
N

k

)
�$�!0
5�t��−$�!−0
5�t���

k

·$�!−0
5�t��
N−k

]
%�t�dt

=
∫ �

−�

[
$�!0
5�t��

N+1−$�!−0
5�t��N+1

$�!0
5�t��−$�!−0
5�t��

]
%�t�dt


The final step used the binomial formula in the same man-
ner as (3.8). �

4.2. Normal Approximation Applied to
Football Pools

To apply Theorem 4.1 to football pools, we need to compute
�, �2, and c for any set of picks y. Equations (4.1)–(4.3)
reduce the problem to the following:

Proposition 4.2. Suppose that one player makes one set
of picks using probabilities �pi�, and has a score given by

Table 4. Best picks found with normal approximation.

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Rank 2 1 3 1 9 18 4 1 2 170 3 4 289 88 1 91 15

% of best 100 100 87 100 92 75 94 100 98 70 96 95 71 81 100 84 88

the random variable X. Then, the mean and variance of X
are

��X�=
g∑

i=1
aipi + �1− ai��1−pi�� (4.14)

�2�X�=
g∑

i=1
�ai +pi − 2aipi��1− ai −pi + 2aipi�
 (4.15)

If a second player makes one set of picks using probabilities
�qi�, and has a score given by Y , then

cov�X�Y �=
g∑

i=1
4ai�1− ai�

(
pi −

1
2

)(
qi −

1
2

)

 (4.16)

To compute the covariance between two opponent scores,
specialize to qi = pi. To evaluate a fixed bet, let pi�or qi� ∈
�0�1�.

Proof. Both X	 and Y can be written as sums of random
variables, one for each game of the pool. Because the sum-
mands are independent, �, �2, and cov distribute over the
sums and the problem reduces to the one game case, which
is straightforward. �

Evaluating the approximate expected return Enorm�y� for
a given set of picks y is now easy. Compute �, �2, and
c for the given y and then perform the numeric integra-
tion (4.6). The process is fast enough that our implemen-
tation can evaluate all 65,536 bets for a 16-game pool in a
few seconds.
As a test of the normal approximation method, we used

it to find the best (highest Enorm) picks bnorm1 � 
 
 
 �bnorm17 for
each week of the 2004-2005 NFL season in a 170,000-
person pool. The approximated return Enorm�bnormi � was off
by an average of 24% from the exact return E�bnormi �, rang-
ing from 43% too low to 48% too high. While this is not
encouraging, at least the order of magnitude is correct.
Happily, it appears that relative quality of picks is

roughly preserved when using normal approximation. For
each week, we used the exact formula of §3.2 to find the
rank of E�bnormi � among all bets. This is the first row of
data in Table 4. In 11 of 17 weeks, the pick maximizing
Enorm was in the top ten for E. The second row of Table 4
shows E�bnormi � as a percentage of the maximum possible
E for the week. Using the normal approximation always
found good picks and often found excellent picks. In the
next section, we are forced to use the normal approximation
exclusively.
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5. Elimination Tournaments
In a single-elimination tournament with R rounds, there
are 2R teams. Before the tournament begins, the teams are
placed into a “bracket.” Each round, the teams play accord-
ing to the bracket, the losers are eliminated, and the win-
ners advance to the next round. This system is common
in two-player/two-team sports, including major sport play-
offs, most tennis tournaments, and the NCAA basketball
tournament, which is our motivating example.
A tournament pool is often run as follows: Each com-

petitor predicts in advance how the entire tournament will
play out, and then scores points for each correct pick. Cor-
rectly picking a team to reach a later round is generally
worth more, and we write wr for the value of a correct pick
in round r . A common sequence is wr = 2r , which gives
each round the same total point value.
As a concrete example, the ESPN Men’s Tournament

Challenge is a free, nationwide pool for the NCAA men’s
basketball tournament. The tournament has six rounds (so
64 teams), and the ESPN pool had approximately five mil-
lion competitors in 2004. Correct picks score 10, 20, 40,
80, 120, and 160 points in rounds 1–6, and the 2004 winner
had 1,330 out of a possible 1,680 points.
As before, we assume knowledge of both the actual prob-

ability of events as well as information about opponent
picks. Note that any given pair of teams can play each other
over the course of the tournament. For each pair of teams
�i� j� in the tournament, assume that we know the actual
probability aij that team i beats team j . This information
could potentially be generated by a computer model.
Also assume that we know the probability pij that an

opponent will pick team i to beat team j . Note that this
information is rarely available, in part because it is unlikely
to be published by pool organizers, but more so because
many potential matchups in a large tournament will not
appear in a significant number of pool entries. We return
to this issue in §5.2.
The problem is to optimize E�y� over y ∈ �, where � is

the set of all possible outcomes of the tournament. Because
there are 2R − 1 games, ��� = 22

R−1.
For an outcome x ∈ �, define A�x� to be the probability

that x occurs given the collection of head-to-head probabil-
ities �aij�. Here,

A�x�=2i� jaij �

where the product runs over all 2R − 1 pairs �i� j� where
team i plays and beats team j in the bracket x. For an
event U ⊂ �, define A�U� to be the probability that U
occurs, given �aij�. This is simply the sum

∑
x∈U A�x�. We

similarly define P�U� associated to �pij�.
Define the event “i→ r” ⊂ � to be the set of outcomes

where team i has reached and won its round r game. Then,
A�i→ r� is the actual probability that team i wins round r ,
and P�i → r� is the percentage of opponents that picked
team i to win round r .

5.1. Canonical Picks

For football pools, there are two natural sets of picks—
picking all favorites and picking the edge in every game.
“All favorites” is the most likely outcome and maximizes
expected score. “The edge” maximizes expected return for
large N (Proposition 3.4).
This section discusses analogous canonical picks for

tournament pools. In addition, we introduce a fundamental
induction technique due to Kaplan and Garstka (2001) for
computations.
The following example shows that tournaments do intro-

duce some complications:

Example 5.1. A four-team tournament with teams A, B,
C, and D pits A versus B and C versus D in Round 1, with
the winners meeting for the final. Assume that A always
beats B, and C beats D with probability 0.6. Finally, A
always beats D, but has only 0.5 probability of beating C.
The only possible outcomes are: A wins over C (probability
0.3), C wins over A (probability 0.3), and A wins over D
(probability 0.4).
We see that the most likely outcome contains the upset

D beats C.

A tournament bracket x consists of two halves—the top
half bracket xtop and the bottom half bracket xbot, with one
team from each half reaching the final game.
To optimize some quantity of a bracket, we follow an

inductive procedure. The inductive hypothesis is that we
know, for each team i, the optimal half-bracket with team i
winning. In the inductive step, we must compute each
team’s optimal whole bracket from the half-bracket infor-
mation. The idea is to optimize over all possible final round
opponents for that team, and then fill in the rest of the bra-
cket using the optimal half-brackets for the two finalists.
The actual details depend on the quantity to be optimized,
and we give three examples below. These computations are
of polynomial complexity in the number of teams.

Example 5.2 (Most-Likely Bracket). The most-likely
bracket maximizes A�x� over brackets x ∈ �. If team i beats
team j in the final of bracket x,

A�x�=A�xtop� · aij ·A�xbot�
 (5.1)

Our inductive hypothesis means we know the optimal choice
of xtop and xbot for fixed i and j . To compute the optimal x
with team i winning, we maximize the value (5.1) over all
choices of j .

Example 5.3 (Very Large Pools). We want to find x
that maximizes expected return E�x� in the limit as the
number N of competitors goes to �. As N → �, every
possible bracket is picked by some opponent. Then, picks x
must be perfect to win a share of the pot, and this happens
with probability A�x�. In this case, the pot will be split with
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N · P�x� competitors. Then, limN→�E�x�=A�x�/P�x�. If
team i beats team j in the final of bracket x,

A�x�
P�x�

= A�xtop�

P�xtop�
· aij

pij

· A�xbot�
P�xbot�

� (5.2)

and we can proceed as in Example 5.2.
It is worth noting that “very large” for a six-round tour-

nament is well in excess of 263 competitors, so these picks
are of little practical use. As an example, with data from
the 2004 NCAA Men’s Basketball Tournament, these limit
picks had the 1, 11, 16, and 4 seeds (from the four regions)
in the final four.

Example 5.4 (Maximum Expected Score). We want to
find the bracket bscore that maximizes the expected score.
Write �T �·� for the expected total score of a bracket (or
partial bracket). If team i is picked as the winner of a
bracket x, then

�T �x�=�T �xtop�+�T �xbot�+wrA�i→ r�� (5.3)

where x has r rounds. Assume without loss of generality
that i comes from xtop. The inductive hypothesis means that
we know the optimal choice of xtop with i winning. The opti-
mal x is found by maximizing over all possible winners of
xbot. Finally, bscore is found by maximizing over all possible
winners of x. This recursion is due to Kaplan and Garstka
(2001), where it is explained in detail. A worthy implemen-
tation is available at T. Adams’ website (Adams 2004).

5.2. Expected Return

This section describes a method for evaluating the quality
of picks y in terms of expected return on a bet of one.
Calculating E�y� exactly for even one y seems intractable,
so we turn our attention to the computation of the normal
approximation Enorm�y�. The basic assumptions are that
opponent scores are modeled by normal random variables
�X	�

N
1 and that the score of picks y is modeled by a normal

random variable Y . Once the means, variances, and covari-
ances of these variables are known, Theorem 4.1 computes
Enorm�y�.
Formulas to compute the vital statistics of X =X	 and Y

are given in the appendix in Proposition A.2 and Proposi-
tion A.3. A crucial feature of these formulas is that they
are written in terms of event probabilities A�−� and P�−�
rather than directly involving the head-to-head data �aij�
and �pij�. In particular, we need to know A�i→ r�, A�i→
r ∩ j → s�, P�i→ r�, and P�i→ r ∩ j → s� for all teams i,
j and rounds r , s.
Given �aij�, the probabilities A�i → r� and A�i → r ∩

j → s� can be computed with the induction technique used
above. For the former,

A�i→ 0�= 1�

A�i→ r + 1�=A�i→ r�
∑
k

aikA�k→ r�� (5.4)

where k runs over all 2r−1 possible round r opponents of
team i. For the latter, assume that r � s and apply the

following cases inductively:

A�i→ r ∩ j → s�

=




A�i→ r� if i= j�

0 if s �m�

A�i→ r�A�j → s� if r <m�

A�i→ r − 1∩ j → s�
∑
k

aikA�k→ r − 1�
if r >m> s�

A�i→ r − 1�∑
k

aikA�k→ r − 1∩ j → s�

if r =m> s�

(5.5)

where m is the round in which teams i and j meet, and k
runs over all 2r−1 possible round r opponents of team i.
The same method would compute P�i→ r� and P�i→

r ∩ j → s� if complete head-to-head data �pij� was avail-
able. As noted earlier, usually most or all of the �pij� are
unknown.
Happily, P�i → r� is simply the fraction of opponents

who have picked team i to win round r , and this informa-
tion is available to pool organizers through simple counts.
The organizers of large public NCAA men’s basketball
pools have a history of publishing the P�i→ r� data. This
is all that is needed for ��X�, cov�X�Y �, and cov�X	�X��
(	 	= �).
The final hurdle is the calculation of �2�X�, which

requires P�i→ r ∩ j → s� for all i� j� r� s. The probabilities
P�i → r ∩ j → s� can be determined directly by examin-
ing poolsheets, where P�i → r ∩ j → s� is the proportion
of opponents who chose teams i and j to reach and win
rounds r and s, respectively. However, this information is
less interesting to the public and unlikely to be published by
pool organizers. An alternative ad hoc method would be to
estimate pij from P�i → r� data and then compute P�i →
r ∩ j → s� from pij . Finally, it may be that �

2�X� remains
relatively unchanged over a range of reasonable inputs and
could simply be taken as known. None of these methods is
entirely satisfying, and the problem of �2�X� remains the
main difficulty in the practical computation of Enorm.

5.3. Finding Optimal Picks

Given �aij�, �pij�, and N , we want to find a bracket b ∈ �
that maximizes the approximate expected return Enorm�b�.
A complete search of all possible picks is usually unrea-
sonable because ��� = 22

R−1 for an R-round tournament.
Instead, we used a hill-climbing (greedy) algorithm

based on the following definition of neighbor picks. Sup-
pose that team i plays team j at some point in picks y, with
team i winning and eventually reaching round r . Let y′ be
identical to y except that team j reaches round r . Then,
y and y′ are neighbors. With this definition, every y has
2R − 1 neighbors, one for each game.
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The principle of hill climbing is to begin with a set of
picks and then calculate the expected return for each of its
neighbor picks. Choose the best neighbor, and repeat the
process until a local maximum is reached.
In experiments with NCAA tournament data, the hill-

climbing process typically converged within 20–60 itera-
tions. Although there is not always a unique local maximum,
hundreds of random starting points consistently climb to the
same few possibilities. A more sophisticated search seems
unlikely to improve the situation, but some theoretical rea-
son to trust hill climbing would be reassuring.

5.4. The NCAA Men’s Basketball Tournament

We have tested our methods on the 2004 and 2005 NCAA
Men’s Basketball Tournaments. Our main sources of data
were the large free online pools run by ESPN and by Yahoo.
ESPN’s Tournament Challenge received about five million
entries in 2004, and Yahoo’s Tournament Pick’em received
about one million entries in 2005.
The 2004 tournament was already over when we began

our analysis, and so we were able to automatically down-
load 500,000 complete opponent brackets. Using this sam-
ple, we computed P�i → r� for every team i and round r
by counting the number of opponents who actually chose
team i to reach and win round r . Having a large supply of
opponent poolsheets also allowed an accurate measure of
P�i→ r ∩ j → s� and therefore sidestepped the difficulties
of computing �2�X�.

Figure 5. 2004 men’s basketball picks (N = 5�000�000).
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In 2005, we were able to generate picks in the three days
between “Selection Sunday” and the tournament start on
Thursday morning. Yahoo published the P�i→ r� data, but
we needed an ad hoc method to compute P�i→ r ∩ j → s�
and therefore �2�X�. We did this by estimating head-to-
head pool probabilities for each pair of teams with

pij ≈
1
2
+ 1
2

(
P�i→ r�

P�i→ r − 1� −
P�j → r�

P�j → r − 1�
)

(5.6)

for teams i and j , who meet in round r . Note that this gives
the known correct value for teams that meet in Round 1.
A complete report of the techniques, input data, and the
various sets of picks generated for 2005 is available online
in Clair and Letscher (2005).
In both years, we used three different sets of actual

probabilities �aij�. Two were derived from computer rat-
ing systems (Massey 2004 and Sagarin 2004), where aij is
computed as a function of the difference between the rat-
ings of teams i and j . The third used historical results of
matchups between teams with specific seedings.
Every choice of N , �aij�, �pij�, and scoring method wr

gives rise to a different expectation function E, and so the
optimal picks vary with all of these inputs.
Figure 5 shows picks optimized for a 5,000,000 com-

petitor pool with ESPN scoring and aij computed from
Massey ratings. Within our model, the expected return on
these picks is estimated at 798.8, and the correlation with
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opponent scores is 0.15. In contrast, the expected return
for the picks bscore that give the maximum expected score
is only 32.7 because of a 0.37 correlation with opponent
scores. Of 500,000 actual poolsheets from ESPN’s pool,
4,297 had the same final four as bscore, whereas only 49
final fours matched the picks in Figure 5.
As a crude measure of the shape of picks, one can count

the number of favorites picked per round. Averaging these
numbers for six data sets coming from two years and three
possible �aij� gives the favorites per round shown in Table 5.
Even the small sample shows a clear trend.

5.5. The Opponent Model

To model opponents, we have made two key assumptions:
first, that opponents pick using a Markov process; and sec-
ond, that opponent scores are normally distributed. Simula-
tion results presented in this section give evidence that the
former is quite reasonable, but that the normality assump-
tion has room for improvement.
First, we randomly selected 5,000 poolsheets entered

(by humans) into ESPN’s 2004 Tournament Challenge, and
then simulated 10,000 tournaments. The frequency distri-
bution of opponent scores is the solid black line in Fig-
ure 6, and has mean 678, standard deviation 190, and skew-
ness 0.49. The normal distribution calculated from actual
and pool probabilities has mean 673 and standard devia-
tion 181. It is the dashed line in Figure 6. The gray line in
Figure 6 shows scores for 5,000 poolsheets created by the
Markov process and the pool probabilities.
In a second experiment, for a fixed set of picks y, we

computed Enorm�y� for N = 100 using our assumptions and
pool probabilities from ESPN’s 2004 Tournament Chal-
lenge. We then simulated 100,000 tournaments, randomly
creating n = 100 opponent picks for each using the oppo-
nent model. Finally, we simulated 100,000 tournaments,
randomly choosing n= 100 opponent picks made by human
ESPN entrants for each. In both sets, the average return of
y was recorded.
All of these simulations were repeated for 100 choices

of y, selected randomly from ESPN entrant picks. The cal-
culated values Enorm�y� were correlated with the simulated
returns with an r-squared of 0.60 for simulated opponents
and 0.53 for real opponents. Return against real oppo-
nents strongly correlates with return against simulated op-
ponents, with an r-squared of 0.98.

Table 5. Favorites picked by various strategies.

Favorites 32 16 8 4 2 1
Optimal expected score 32 15
67 7
67 3
67 1
67 0
67
Optimal expected return, 31
83 15 7
33 2
33 0
5 0
5

N = 1�000
Optimal expected return, 31 13
67 5
83 1
67 0
17 0
17

N = 5�000�000

Figure 6. Opponent score distributions.
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The independence assumptions and Markov model for
opponent picks are quite reasonable because real and simu-
lated opponents are nearly indistinguishable in the simula-
tions above. On the other hand, the normal approximation
fails to capture the left skewness of real pool scores, which
comes from high point values for later-round games. It
might be worth replacing the normal approximation with an
appropriate skewed distribution, or even with a distribution
calculated from simulated opponents.

5.6. Input Data

As with football picks, one would like some idea of how
the optimal picks and their expected return are affected by
variations in the inputs. Because there is only one tour-
nament per year and there is so much input data, this a
difficult question. In both 2004 and 2005, we used three
different sources for �aij�. Because the bulk of the picks
are still favorites, the different poolsheets are similar for
early rounds. In 2004, the three poolsheets had different
final fours, although all featured only teams seeded 1-3. All
three also agreed that #1-seeded St. Joseph’s was a good
pick for the finals. In 2005, things were much more stable.
We computed six sets of picks, using the three �aij� and two
choices of N and scoring system. All picked a Duke versus
Washington final, and all agreed that heavy favorites Illinois
and North Carolina should fail to reach the final four.
On the other hand, picks created with one set of �aij�

appear to be much poorer when evaluated using a differ-
ent set. The expected return of 798.8 for the Massey-based
picks in Figure 5 drops to 363.5 under Sagarin and 70.8
using NCAA historical seed records. Of course, the bscore
picks also drop, from 32.7 to 8.3 and 0.4, respectively. As
with football, it seems that the best picks remain good when
inputs vary, whereas calculated values of expected return
are less reliable.

6. Questions
How does one deal with different scoring methods? Our
model assumes that all games in the same round are worth
the same amount. However, some office pools give extra
points for picking “upsets,” or for special games (such as
Monday night football). Notational complexity appears to
be the only barrier to generalization, although providing
incentives for upsets may produce a substantial change in
opponent behavior. Some pools allow players to assign a
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confidence level to games, with scoring adjusted appropri-
ately. This sort of pool is harder to understand because a
new model of opponent behavior is needed.
What is the correct strategy for a pool with one oppo-

nent? This is interesting even if that opponent’s picks are
explicitly known (pij ∈ �0�1� ∀ i� j).
What if multiple entries are allowed? That is, which col-

lection of picks b1� 
 
 
 �bk maximizes total winnings (given
that a bet of k is now required)? Many pools allow multiple
entries (ESPN in particular allows five), so this question is
of practical interest. There is a straightforward upper bound
for return on k picks of kE�b� that might be approachable
for small k, given the concentration of opponents in one
small area of the picking space. Pursuing a multipick strat-
egy might also lessen the dependence on the aij . To find a
multiple-entry strategy, refinements to the normal approx-
imation method are needed, although the main difficulty
may simply be that the search space grows enormously.

Appendix

A.1. Computational Improvements

For picks y in a football pool, computing the exact for-
mula (3.9) for E�y� appears to require O�4g� terms. More
precisely, there is a sum over 2g outcomes x, and for each
outcome x, ��x�x∧y� is a sum of about 2g opponent bets.
This section gives a method for computing ��x�x∧ y� in
polynomial time.

Proposition A.1. For s � 0 and x the outcome where all
favorites win,

��x� s�=
g∑

k=s

�−1�k−s

(
k

s

)
�k�p�� (A1)

��x� s�= 1−
g∑

k=s

�−1�k−s s

k

(
k

s

)
�k�p�� (A2)

where �k�p� is the elementary symmetric polynomial in pi

of degree k.

Proof. We have ��x� s�=∑
z P�z�, where the sum is over

all z with exactly s favorites and g − s underdogs, and so
has

(
g

s

)
terms and is symmetric in pi. Each term of the sum

looks like

p5�1� · · ·p5�s� · �1−p5�s+1�� · · · �1−p5�g��

for some permutation 5 , which multiplies to have
(
g−s

k−s

)
terms in each degree k � s, each with sign �−1�k−s . Be-
cause �k�p� has

(
g

k

)
terms, the degree k part of ��x� s�

must be �−1�k−s
(
k

s

)
�k�p�.

The formula for ��x� s� follows from

��x� s�=
s−1∑
k=0

��x� k�

and the identity

j∑
i=0

�−1�i
(
n

i

)
= �−1�j

(
n− 1
j

)

 �

Now we can compute � and � quickly (for numeric
data). First, redefine the “favorite” so that x does pick all
the favorites (replacing ai and pi with 1− ai and 1− pi

as needed). Next, compute Sk =
∑

i p
k
i for k = 1� 
 
 
 � g.

Finally, the Newton-Girard equations inductively compute
�k�p�:

�k = �−1�k−1 1
k

k−1∑
i=0

�−1�i�iSk−i
 (A3)

The authors, sick of the four-hour wait for football picks,
would love to find a way to eliminate the sum over all
outcomes in (3.9).

A.2. Tournament Statistics

These results are generalizations of work in Kaplan and
Garstka (2001), which computes the mean and variance for
one fixed bet. All of the following formulas are readily
computable, each with O�T 2R2� terms, where T = 2R is
the number of teams.

Proposition A.2. Suppose that one player makes one set
of picks using probabilities �pij�, and has a score given by
the random variable X. Then, the mean and variance of X
are

��X�=
R∑

r=1

T∑
i=1

wrA�i→r�P�i→r�� (A4)

�2�X�=
R∑

r�s=1

T∑
i�j=1

wrws�A�i→r∩j→s�P�i→r∩j→s�

−A�i→r�A�j→s�P�i→r�P�j→s�
 (A5)

Proof. Write

X =∑
g

Xg�

where g runs over all 2R − 1 games, and Xg is a random
variable giving the player’s score in game g. The variables
Xg usually have dependencies. In particular, let play�g� be
the set of teams that could play in a given game g. Then,
Xg and Xh are independent when play�g� and play�h� are
disjoint, and are otherwise dependent for generic aij � pij .
For g�h games in round r� s� respectively,

��Xg�=wr

∑
i∈play�g�

A�i→ r�P�i→ r�� (A6)

��Xh�=ws

∑
j∈play�h�

A�j → s�P�j → s�� (A7)

��XgXh�=wrws

∑
i∈play�g�

∑
j∈play�h�

A�i→ r ∩ j → s�

·P�i→ r ∩ j → s�
 (A8)
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Because each team i can play in exactly one round r
game, and each team j can play in exactly one round s game,
we have

�

( ∑
round�g�=r

Xg

)
=wr

T∑
i=1

A�i→ r�P�i→ r�� (A9)

�

( ∑
round�g�=r
round�h�=s

XgXh

)
=wrws

T∑
i� j=1

A�i→ r ∩ j → s�

·P�i→ r ∩ j → s�
 (A10)

Summing over rounds r and s gives

��X�=�

(∑
g

Xg

)
=

R∑
r=1

T∑
i=1

wrA�i→ r�P�i→ r�� (A11)

��X2�=�

(∑
g�h

XgXh

)
(A12)

=
R∑

r� s=1

T∑
i� j=1

wrwsA�i→ r ∩ j → s� (A13)

·P�i→ r ∩ j → s�
 (A14)

Finally, �2�X�=��X2�−��X�2. �

We also need the covariance between the scores of two
opponents and the covariance between our score and any
one opponent. Both of these are specializations of the fol-
lowing:

Proposition A.3. Suppose that two independent pickers
make picks with pool probabilities �pij� and �qij�, and have
scores given by the random variables X and Y . Then, the
covariance

cov�X�Y �

=
R∑

r� s=1

T∑
i� j=1

wrwsP�i→ r�Q�j → s�

·�A�i→ r ∩ j → s�−A�i→ r�A�j → s�
 (A15)

Proof. The calculation is nearly identical to the argu-
ments for Proposition A.2. The only difference is that

P�i→ r ∩ j → s� is replaced by P�i → r� · Q�j → s�
because the players are assumed to make picks indepen-
dently. �

To get covariance between two opponents in a pool, take
Q= P . To get covariance between an opponent and a fixed
bet, take Q�j → s� ∈ �0�1� as appropriate.
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