The Ihara zeta function of the infinite grid

Bryan Clair

Department of Mathematics and Computer Science Saint Louis University bryan@slu.edu

November 3, 2013

An Integral

$$I(k) = \frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} \log \left[1 - \frac{k}{2} (\cos t + \cos s)\right] ds dt$$

The zeta function of a finite graph

X a graph.

Loop A closed path in X, up to cyclic equivalence, without backtracking.

Prime A loop which is not a power of another loop.

Primes in the octahedral graph

The zeta function of a finite graph

The zeta function of a graph X is

$$Z(u) = \prod_{\gamma ext{ prime}} rac{1}{1 - u^{\mathsf{length}(\gamma)}},$$

which converges for $u \in \mathbb{C}$ near 0.

Thm (Ihara '66, Hashimoto '89, Bass '92)

X a graph with v vertices, e edges. Let A be the adjacency matrix, Q be the $v \times v$ diagonal matrix with $Q_{ii} = \text{deg } v_i - 1$, and $\Delta_u = I - uA + u^2Q$. Then

$$Z(u)^{-1} = (1 - u^2)^{e-v} \det \Delta_u$$

Example

Octahedral graph

$$\Delta_{u} = \left(\begin{array}{ccccccccc} 3u^{2} + 1 & -u & -u & -u & -u & 0 \\ -u & 3u^{2} + 1 & -u & -u & 0 & -u \\ -u & 3u^{2} + 1 & -u & -u & 0 & -u \\ -u & -u & 3u^{2} + 1 & 0 & -u & -u \\ -u & -u & 0 & 3u^{2} + 1 & -u & -u \\ -u & 0 & -u & -u & 3u^{2} + 1 & -u \\ 0 & -u & -u & -u & -u & 3u^{2} + 1 \end{array} \right)$$

$$\begin{split} Z(u)^{-1} &= (1 - u^2)^6 \det \Delta_u \\ &= (u - 1)^7 (u + 1)^6 (3u - 1) (3u^2 + 1)^3 (3u^2 + 2u + 1)^2 \\ &= 1 - 16u^3 - 30u^4 - 48u^5 + 16u^6 + \dots - 3888u^{22} + 729u^{24} \\ &= (1 - u^3)^{16} (1 - u^4)^{30} (1 - u^5)^{48} (1 - u^6)^{104} \dots \end{split}$$

Riemann Hypothesis

For a q+1 regular graph X, put $u=q^{-s}$.

The Riemann hypothesis for X

All poles of
$$Z(q^{-s})$$
 with $0 < \Re(s) < 1$ satisfy $\Re(s) = \frac{1}{2}$.

The spectrum of A is contained in [-q-1, q+1]. Put

$$\mu = \max\big\{|\lambda|\big|\lambda \in \operatorname{spec}(A), |\lambda| \neq q+1\big\}$$

Since
$$\Delta_u = 1 - uA + qu^2$$
,

poles of $Z(u) \longleftrightarrow$ eigenvalues of A

The Riemann hypothesis for X

$$\begin{array}{c} \updownarrow \\ \mu \leq 2\sqrt{q} \\ \updownarrow \end{array}$$

X is a Ramanujan graph

The grid zeta function

Let X be the infinite grid.

$$\pi = \mathbb{Z} \times \mathbb{Z} = \langle a \rangle \times \langle b \rangle$$
 acts on X .

The zeta function is still an infinite product:

$$Z_{\pi}(u) = \prod_{[\gamma] ext{ prime}} rac{1}{1 - u^{\mathsf{length}(\gamma)}},$$

where $[\gamma]$ is an equivalence class of loops under translation by π .

$$Z_{\pi}(u) = (1 - u^4)^{-2} (1 - u^6)^{-4} (1 - u^8)^{-26} (1 - u^{10})^{-152} \cdots$$

= 1 + 2u⁴ + 4u⁶ + 29u⁸ + 160u¹⁰ + 1070u¹² + \cdots

Prime loops of length 8

Determinant formula

On infinite graphs, the adjacency matrix becomes an adjacency *operator*. For the infinite grid,

$$\Delta_u = 1 - uA + 3u^2 : \ell^2(\mathbb{Z} \times \mathbb{Z}) \to \ell^2(\mathbb{Z} \times \mathbb{Z}).$$

There is still a determinant formula for the zeta function. Here,

$$Z_{\pi}(u)^{-1} = (1 - u^2) \det_{\pi} \Delta_u.$$

With $\pi = \mathbb{Z} \times \mathbb{Z}$, \det_{π} is an operator determinant:

$$\det {}_{\pi}\Delta_u = \exp \operatorname{\mathsf{Tr}}_{\pi} \log \Delta_u$$

 Tr_π is the trace on the group von Neumann algebra $\mathcal{N}(\pi)$.

The zeta function integral

Put $\pi = \mathbb{Z} \times \mathbb{Z} = \langle a \rangle \times \langle b \rangle$. The adjacency operator on the grid is

$$A = a + a^{-1} + b + b^{-1} \in \mathbb{C}[\pi]$$

Fourier transform: $\ell^2(\mathbb{Z} \times \mathbb{Z}) \leftrightarrow L^2(S^1 \times S^1)$ with $(a,b) \leftrightarrow (e^{is},e^{it})$.

$$\hat{A} = 2\cos s + 2\cos t$$

$$\hat{\Delta_u} = 1 - 2u(\cos s + \cos t) + 3u^2$$

The von Neumann trace is integration over $S^1 \times S^1$.

$$\det_{\pi} \Delta_{u} = \exp \int \int_{S^{1} \times S^{1}} \log(1 + 3u^{2} - 2u(\cos t + \cos s)) \, dsdt$$

$$= (1 + 3u^{2}) \exp \int \int_{S^{1} \times S^{1}} \log(1 - \frac{k}{2}(\cos t + \cos s)) \, dsdt$$

$$= (1 + 3u^{2}) \exp \mathbf{I}(k)$$

with $k = 4u/(1 + 3u^2)$

11 / 21

CONVERGENCE OF ZETA FUNCTIONS OF GRAPHS

BRYAN CLAIR AND SHAHRIAR MOKHTARI-SHARGHI

ABSTRACT. The L^2 -zeta function of an infinite graph Y (defined previously in a ball around zero) has an analytic extension. For a tower of finite graphs covered by Y, the normalized zeta functions of the finite graphs converge to the L^2 -zeta function of Y.

Introduction

Associated to any finite graph X there is a zeta function Z(X,u), $u \in \mathbb{C}$. It lefined as an infinite product but shown (in various different cases) by Ihara, shimoto. and Bass [5, 4, 1] to be a polynomial. Indeed the rationality formula

November 3, 2013

11 / 21

To say "growth rates" suggests a tower, or at least a sequence of covering the main theorems in this paper are stated as bounds on given finite covers X:

Theorem 0.1. Let X be a finite simplicial complex, and \widetilde{X} an infinite covering with covering group Γ . Suppose that $b_q^{(2)}(\widetilde{X};\Gamma)=0$, or equivalent there are no L^2 harmonic q-cochains on \widetilde{X} .

 (Spectral Gap) Suppose there is a gap near 0 in the L² spectrum of dimension q. Then there are C > 0 and M > 0 so that for any finite cover X' = X̄/Γ' of X:

$$b_q(X') \leq C \frac{[\Gamma : \Gamma']}{e^{M \operatorname{short}(\Gamma')}}.$$

2. (Positive Novikov-Shubin Invariant) If \widetilde{X} has Novikov-Shubin invariant 0, then for any $\varepsilon > 0$ there is a $C_{\varepsilon} > 0$ so that for any finite regular

1 Letscher Favorites

ese picks scored 87 out of 192 using 2^r scoring.

Table 1 Some graphs with n = 1

#	Graph	q	χ(X)	r(u)	Branchpoints
1	000	3	-1	$\frac{1-2u+3u^2}{2u}$	-(-)
2		4	-3	$\frac{1-9u^2+16u^4}{8u^2}$	\leftarrow
3	***	2	-2	$\frac{1 - u + u^2 - 3u^3 + 2u^4 - 4u^5 + 8u^5}{4u^3}$	+
4	\$\$\$\$\$	3	-2	1+3u ² 4u	-(-)

THIS IS INCORRECT.

1 Cellular Covers

Let X be a locally finite metric space (i.e. metric balls are finite uniformly?)).

For $Y \subset X$, define the ℓ -neighborhood of Y:

$$N_{\ell}(Y) = \{x \in X | d(x, Y) \le \ell\}$$

The diameter of Y is $\max_{y_1,y_2 \in Y} d(y_1, y_2)$ Suppose we have the following data:

- A control "size" K > 0.
- A "dimension" $n \ge 0$.

Bryan Clair (SLU

The Ising model

X a finite graph. A state σ is an assignment of spins ± 1 to each vertex. The interaction energy of a state is

$$\varepsilon(\sigma) = -\sum_{v_i \sim v_i} \sigma(v_i) \sigma(v_j) = \#(\mathsf{unlike\ spins}) - \#(\mathsf{like\ spins})$$

has energy 4 - 3 = 1.

The Gibbs distribution:

$$\mathsf{Prob}(\sigma) \sim e^{-\beta \varepsilon(\sigma)}$$

where $\beta = 1/(kT)$, k is Boltzmann's constant, T is temperature.

The Ising model

Need to compute the partition function

$$Z(\beta) = \sum_{\sigma} e^{-\beta \varepsilon(\sigma)}$$

$$\mathsf{Prob}(\sigma) \sim \frac{\mathsf{e}^{-\beta \varepsilon(\sigma)}}{Z(\beta)}$$

- $T \to \infty$: $\beta \to 0$, $Z(\beta) \to 2^{\nu}$, all states equally likely.
- $T \to 0$: $\beta \to \infty$, only lowest energy states have positive probability. The system is magnetized.

The Ising model

Let X_N be the square $N \times N$ grid, and $Z(X_N, \beta)$ the partition function.

Thm (Kasteleyn '63)

$$\lim_{N\to\infty} Z(X_N,\beta)^{2/N} = 4\cosh^2(\beta)\exp{\bf I}(k)$$

with $k = 2 \sinh \beta / \cosh^2 \beta$.

Integration

$$\begin{split} \mathbf{I}(k) &= \frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} \log \left[1 - \frac{k}{2} (\cos t + \cos s) \right] \, ds \, \, dt \\ &= \frac{2}{\pi^2} \int_0^{\pi/2} \int_0^{\pi} \log \left[1 - k \cos(\tau) \cos(\omega) \right] d\tau d\omega \\ &= \frac{2}{\pi} \int_0^{\pi/2} \log \frac{1}{2} \left[1 + \sqrt{1 - k^2 \sin^2(\omega)} \right] d\omega \end{split}$$

Take the derivative w.r.t. k

$$\mathbf{I}'(k) = \frac{1}{k} \left(1 - \frac{2}{\pi} \int_0^{\pi/2} \frac{d\omega}{\sqrt{1 - k^2 \sin^2(\omega)}} \right)$$
$$= \frac{1}{k} \left(1 - \frac{2}{\pi} \mathbf{K}(k) \right)$$

15 / 21

K(k) is the complete elliptic integral of the first kind.

Bryan Clair (SLU) The grid zeta function November 3, 2013

The story thus far...

$$Z_{\pi}(u)^{-1} = (1 - u^{2})(1 + 3u^{2}) \exp \mathbf{I}(k)$$

$$k = \frac{4u}{(1 + 3u^{2})}$$

$$\mathbf{I}'(k) = \frac{1}{k} \left(1 - \frac{2}{\pi}\mathbf{K}(k)\right)$$

$$\Im \mathbf{K}(k)$$

Theta functions

- ullet $au\in\mathbb{H}$, the upper half plane
- The "nome" $q = e^{\pi i \tau}$

$$\theta_2 = \sum_{n=-\infty}^{\infty} q^{(n+1/2)^2} = 2q^{1/4} \prod_{n=1}^{\infty} (1 - q^{2n})(1 + q^{2n})^2$$

$$\theta_3 = \sum_{n=-\infty}^{\infty} q^{n^2} = \prod_{n=1}^{\infty} (1 - q^{2n})(1 + q^{2n-1})^2$$

$$\theta_4 = \sum_{n=-\infty}^{\infty} (-1)^n q^{n^2} = \prod_{n=1}^{\infty} (1 - q^{2n})(1 - q^{2n-1})^2$$

The squares of the theta functions are modular forms of weight 1.

Uniformization

$$\mathbf{K} = \frac{\pi}{2}\theta_3^2 \qquad k = \frac{\theta_2^2}{\theta_3^2}$$

A plot of $\tau \to (k(\tau), \mathbf{K}(\tau))$.

Uniformization

$$\mathbf{I}' = \frac{1}{k} \left(1 - \frac{2}{\pi} \mathbf{K}(k) \right) = \frac{\theta_3^2 (1 - \theta_3^2)}{\theta_2^2}$$

- I' is analytic as a funtion of $\tau \in \mathbb{H}$
- ullet I is analytic as a funtion of $au\in\mathbb{H}$
- $au o (k(au), \mathbf{I}(au))$ takes all values of \mathbf{I}

Uniformization

Let S be the Riemann surface

$$S = \{(u, \tau) \in \mathbb{C} \times \mathbb{H} \mid k(u) = k(\tau)\}$$
$$\frac{4u}{1 + 3u^2} = \frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}$$

Thm

The zeta function of the grid is defined on S by

$$Z_{\pi}^{-1} = (1 - u^2)(1 + 3u^2) \exp I(k)$$

It has isolated singularities which lie over the set

$$u = \{0, \pm \frac{1}{3}, \pm \frac{1}{\sqrt{3}}, \pm \frac{i}{\sqrt{3}}, \pm 1\}$$

The grid zeta function

