
CS 3500 Fall 2015

Programming Assignment 6

Due Monday, November 23 before midnight.

NAME
proxy - An http proxy server.

USAGE
proxy <port>

DESCRIPTION
proxy is a simple multithreaded web proxy server. A web proxy server is a
program that allows clients (web browsers) to make indirect network connections
to other network servers (e.g. websites). When a user configures their web
browser to use a proxy, all of their http requests are sent to the proxy server.
The proxy server receives these requests, connects to the appropriate web servers
to fill the requests and then passes the results back to the client.

Proxy servers can perform useful functions, such as content reformatting, caching,
censorship, circumventing censorship, or anonymization. The proxy web server
you are to write is not required to do any of these things, except to the extent
that any proxy server provides a degree of anonymization.

When executed, proxy should open the port passed as a command line argument
to accept incoming TCP connections. When a new connection is accepted,
proxy should create a new detached thread to handle the connection (from here
on known as the client connection). The new thread should:

• Read a single HTTP request from the client connection.

• Determine the target host (web server) by examining the Host: header of
the request.

• Create a new TCP connection to port 80 of the target host and pass the
request to the target host.

• Copy the response from the target host back to the client connection.

• Close both target host and client connections.

The proxy server should never exit.

You will need to create a makefile because at the very minimum you’ll need to
use the -lpthread option to compile. Make sure your program compiles with
the command make proxy.

Your proxy server should never exit or crash. It must survive any input, no
matter how badly formatted.

1



PROTOCOL DETAILS
To write a fully standards-compliant proxy server is beyond the scope of this
assignment. However, certain details need to be handled for a functional proxy:

• If the HTTP request is missing the Host: header, proxy should respond to
the client with a properly formatted 400 Bad Request HTTP response.
You may detect and respond to other request formatting problems if you
like.

• If proxy cannot connect to the target host (because it doesn’t exist or isn’t
accepting connections), it should respond to the client with a properly
formatted 404 Not Found HTTP response.

• The Connection: keep-alive header specifies that a TCP connection
should be kept alive for multiple HTTP requests. Because proxy only
processes one HTTP request per connection, this can lead to stalls in
fetching webpages where either the client or server waits in vain for data.
Fix this by changing all Connection: headers to Connection: close. Or,
better still, handle the keep-alive request properly by processing more
than one HTTP request per TCP connection.

At the end of this document, you have been assigned a range of ports to use on
turing. To avoid conflicts, please use only your assigned ports for testing.

EXTENSIONS FOR EXTRA CREDIT
This basic server could be improved and extended in many ways. Here are some
suggestions that you might implement for extra credit.

Protocol improvements
• A POST request is followed by a message body, which proxy is allowed to

ignore. This means POST methods won’t work, and so this proxy server
isn’t so useful for, say, filling out forms. Detect POST methods and properly
pass along the message body to the target host.

• It is possible to put a web server at a port other than port 80. In the
hostname, this looks like www.somewhere.edu:8080 to specify port 8080
instead. Detect this situation and connect to the appropriate port.

Functionality extensions
These improvements should be off by default, activated by a command line
switch.

• Let’s go censorship! Only allow connections to servers matching some
criterion, like ending with .edu.

• Mess with the web. Translate every page into pig latin. Replace all
occurrences of “Rolla” with “Fools”. Implement http://xkcd.com/1288/

2



• Make some money. Anytime a host is not found, redirect to an advertiser’s
website.

• Create a cache. Keep local copies of responses in files, so that you can
quickly serve them without having to connect to the target host server.

HINTS
See the Public/os/bin folder for a working version. This prints a lot of debug-
ging information to stdout that you might find helpful in understanding how it
works. It also allows you to test your browser’s proxy settings.

See the course web page for information on how to configure web browsers to
use a proxy server.

Read “HTTP Made Really Easy”, available on the links part of the OS webpage.
Refer to the HTTP 1.0 and HTTP 1.1 specifications if you need more details.

Don’t hesitate to copy code from the iecho/ispeak/ilisten demo programs
from class.

There is a natural way to begin writing this program as two separate programs:
1. The client-side piece should accept connections from clients (web browsers),

parse the hostname, and then simply print the request to stdout. This
piece can be easily built from ilisten2, and is a good test to make sure
your web browser is properly configured for the proxy server. As a next
step, you could have the client-side piece return a “404 Not Found” re-
sponse to all client connections.

2. The server-side piece should read data on stdin (a request), open a con-
nection to some web server and pass the input to it. The web server’s
response should be copied to stdout. This piece can be based on ispeak,
and is a good test to make sure you can successfully connect to external
web servers.

Merging these two programs into one is much easier than trying to do it all at
the same time.

The lines of text in the HTTP protocol are terminated with CR/LF, a pair of
ASCII characters. Typical Unix text files only end with LF. You can get CR/LF
as a string with "\r\n". In particular, a blank line is the string "\r\n".

You’ll want to pass the file descriptor for a newly accepted connection to the
thread you create to handle that connection. One way to do this is to simply
typecast the integer file descriptor to a (void *) pointer then cast it back to
an int in the thread routine. Since a pointer is a number too, this works,
but it produces a compiler warning because it’s not guaranteed to be portable.
A better solution is to call malloc (or use C++’s new) to get space for one
integer, store the file descriptor there, and then pass the pointer to the thread
routine. Within the thread routine, cast back to an (int *) pointer, copy the
file descriptor into a local variable, then free (or delete) the allocated memory.
Note that you cannot simply pass a pointer to a local variable in the main accept

3



loop - that leads to race conditions when two connections are accepted quickly
one after the other.

Be aware that when your proxy server is running, anyone on the internet can
connect to it and use it. Don’t leave it running for long periods of time.

USEFUL MAN PAGES

strtok_r(3)

strcmp,strncmp,strcasecmp(3)

fdopen(3)

fclose(3)

fgets(3)

fputs(3)

getaddrinfo(3)

socket(2)

connect(2)

bind(2)

listen(2)

accept(2)

close(2)

pthread_create(3)

pthread_detach(3)

PORT ASSIGNMENTS

aalhamad 9100 - 9109 andersonn 9110 - 9119 asiliun2 9120 - 9129
bgovreau 9130 - 9139 caldwell 9140 - 9149 criddell 9150 - 9159
djacob10 9160 - 9169 djoosten 9170 - 9179 eramos 9180 - 9189

gaoj 9190 - 9199 georges 9200 - 9209 gocampo2 9210 - 9219
jcisneros 9220 - 9229 jgovreau 9230 - 9239 kgray20 9240 - 9249

kyu9 9250 - 9259 mmeyer71 9260 - 9269 pokhrelb 9270 - 9279
scurran7 9280 - 9289 sravicha 9290 - 9299 ssantana 9300 - 9309

trelzfm 9310 - 9319 tthai5 9320 - 9329 ywang85 9330 - 9339
zlucas 9340 - 9349

4


