
CS 3500 Fall 2015

Programming Assignment 5

Due Thursday, November 5 before midnight

NAME
Dynamic memory allocation routines:

#include <sys/types.h>

void *malloc(size_t size);

void free(void *ptr);

void *calloc(size_t num_of_elts, size_t elt_size);

void *realloc(void *pointer, size_t size);

USAGE
Link with any C/C++ program.

DESCRIPTION
This is an individual assignment. You must write this in C (use the gcc com-
piler), not in C++.

The goal of this assignment is to replace the memory allocation routines that
are provided by the C/C++ standard library. The malloc function is called by
programmers to request a contiguous block of memory. The free function frees
a block of memory previously allocated, so it can be reused. The calloc and
realloc functions are minor variants of malloc.

Read the man page for these functions for more details. In particular, size_t
is defined in the include file <sys/types.h> and you can treat it like any other
integer type.

You are to create a file which contains code implementing the C library functions
malloc, free, realloc, calloc. This is not a complete program, so you’ll need
to write test programs as well.

malloc should maintain a list of free memory blocks and fill incoming requests
for memory from the list. When searching the free list for a block of sufficient
size, use the first-fit method. If no large enough block is found, create a new
free block by calling sbrk(). The new free block should be a multiple of the
system page size, and large enough to fill the request. If sbrk() fails, set errno
to ENOMEM and return NULL, as described in the malloc man page.

If the requested block is smaller than the found free block, you’ll need to split
the free block into two pieces: one that stays on the free list, and one that
malloc can return.

malloc should always return values that are divisible by 8 (long word aligned).

1



The free function frees memory allocated by malloc. It should simply add the
block back onto the free list. If free is called with a NULL pointer, it returns. If
free is called with a pointer not allocated by malloc, the results are undefined.
It would be nice if free combined adjacent free blocks, but that is not required.

DELIVERABLE
Your github repo should contain a file malloc.c which contains definitions for
malloc, free, realloc, and calloc but has no main() and with all output
(cout, printf) removed.

HINTS
Start by writing (or gathering) programs that call malloc, free, etc. Make sure
you understand what they do, and test them with the built in malloc, etc.

Call your functions mymalloc, myfree, myrealloc, and mycalloc until you’re
really, really sure everything works. Once you rename them malloc, free, etc.,
they get called by constructors, by stream I/O, and in all sorts of places that
will cause programs to fail utterly if the memory functions aren’t working. This
is the reason you are required to use C rather than C++ for this assignment.

Write mymalloc first and test it thoroughly before attempting the other three
functions. Test these functions by writing a separate program which has a
main() and makes calls to mymalloc, myfree, etc. In your test program, youll
need to declare mymalloc, myfree, ... as extern functions.

To write malloc, use a global variable to keep track of the first block on the
linked list of free blocks. At the beginning of each block of memory, leave extra
space for a structure that contains the size of the block and a pointer to the
next block in linked list. (Use a doubly linked list if you prefer.)

Use sysconf(_SC_PAGESIZE) to find the systems page size when you need to
request new memory from the system.

Since blocks need to be long word aligned, youll need to be able to round a
number up to the nearest multiple of 8. This is surprisingly tricky. Write a
function to do this and test it separately.

Once youre really sure malloc is working, write free. Test some more, and then
finally write realloc and calloc. The calloc function should call malloc and
then call memset to clear the newly allocated block. The realloc function
should call malloc to make a new block, memcpy to move the old information
into the new block, and then free to release the old block. Beware that in
realloc, the block can be resized larger or smaller, and the number of bytes
you copy is the smaller of the old and new sizes.

When you’re sure everything is working, rename your functions malloc, free,
realloc, calloc. If you now compile any program along with your malloc.c,
they will get called instead of the standard C/C++ memory allocators.

I use the programs churn.c and churn2.c in the os/demo_mem directory to

2



heavily test your memory allocators. Feel free to test your functions with these
programs as well.

USEFUL MAN PAGES

malloc(3)

realloc(3)

calloc(3)

free(3)

sbrk(3)

sysconf(3)

memset(3)

memcpy(3)

3


