Math 320 – Review Questions

1. Given an ODE problem y' = f(t, y), $a \le t \le b$, $y(a) = y_0$, let $h = \frac{b-a}{N}$ and $t_i = a + ih$. The Backwards Euler Method for solving puts $w_0 = y_0$ and computes:

$$w_{i+1} = w_i + hf(t_{i+1}, w_{i+1}).$$

This method is implicit - the variable w_{i+1} appears on both sides of the equation, and you need to solve for w_{i+1} to take the step.

Use this method with N = 5 to solve y' = -10y, $0 \le t \le 1$, $y_0 = 1$, and compute the approximation to y(1).

Repeat with N = 10.

- 2. Consider the differential equation $y' = ty^{\alpha}$, where $0 \le t \le 1$, $y_0 = 1$, and $\alpha > 0$ is a constant.
 - (a) Find a Lipshitz constant (depending on α) for f in the y variable on the domain

$$D = \{(t, y) | 0 \le t \le 1 \text{ and } 1 \le y \le 2\}.$$

- (b) If you use Eulers method with n = 100, will you get a more accurate solution for the $\alpha = 1$ problem or the $\alpha = 2$ problem?
- 3. Computing the integral $\int_0^1 e^{-x^2} dx$ with Simpson's rule and h = 0.25 gives 0.746855. Using h = 0.125 gives 0.746826.

Use extrapolation to compute a more accurate result.

- 4. Show that the midpoint rule for quadrature has degree of precision equal to one.
- 5. (a) Perform one step of Euler's method on the differential equation y' = y + t with $y_0 = 1, 0 \le t \le 0.5$ and h = 0.5.
 - (b) Repeat with the modified Euler's method.
 - (c) Use part (b) to estimate the error in your result from part (a).