Monday, May 5

Math 320 – Review Questions

1. Given an ODE problem y' = f(t, y), $a \le t \le b$, $y(a) = y_0$, let $h = \frac{b-a}{N}$ and $t_i = a + ih$. The Backwards Euler Method for solving puts $w_0 = y_0$ and computes:

$$w_{i+1} = w_i + hf(t_{i+1}, w_{i+1}).$$

This method is implicit - the variable w_{i+1} appears on both sides of the equation, and you need to solve for w_{i+1} to take the step.

Use this method with N = 5 to solve y' = -10y, $0 \le t \le 1$, $y_0 = 1$, and compute the approximation to y(1).

Repeat with N = 10.

Solution: The Backwards Euler Method becomes

$$w_{i+1} = w_i - 10hw_{i+1}$$

or

$$w_{i+1} = \frac{w_i}{1+10h}.$$

Then when N = 5, h = 0.2 and each step gives $w_{i+1} = \frac{1}{3}w_i$. Since $w_0 = 1$, $w_i = 3^{-i}$. $y(1) \approx 3^{-5} = 0.0041$. When N = 10, h = 0.1 and each step gives $w_{i+1} = \frac{1}{2}w_i$. Since $w_0 = 1$, $w_i = 2^{-i}$. $y(1) \approx 2^{-10} = 0.00097$. The exact solution is $y(t) = e^{-10t}$ and y(1) = 0.000045.

- 2. Consider the differential equation $y' = ty^{\alpha}$, where $0 \le t \le 1$, $y_0 = 1$, and $\alpha > 0$ is a constant.
 - (a) Find a Lipshitz constant (depending on α) for f in the y variable on the domain

$$D = \{(t, y) | 0 \le t \le 1 \text{ and } 1 \le y \le 2\}.$$

(b) If you use Eulers method with n = 100, will you get a more accurate solution for the $\alpha = 1$ problem or the $\alpha = 2$ problem?

Solution: Compute $\frac{\partial f}{\partial y} = t\alpha y^{\alpha-1}$. On *D*, we have $\left|\frac{\partial f}{\partial y}\right| \leq \alpha 2^{\alpha-1} = L$.

When $\alpha = 1$, L = 1. When $\alpha = 2$, L = 4. Since smaller Lipshitz constants result in less error in Euler's method, we expect the solution to be more accurate when $\alpha = 1$. (And it is, too: The error is 0.0109 for $\alpha = 1$ and 0.0382 when $\alpha = 2$)

3. Computing the integral $\int_0^1 e^{-x^2} dx$ with Simpson's rule and h = 0.25 gives 0.746855. Using h = 0.125 gives 0.746826.

Use extrapolation to compute a more accurate result.

Solution: We expect that cutting h in half from 0.25 to 0.125 will cut the error in Simpson's rule by 1/16. If the error when h = 0.125 is ϵ , then

$$15\epsilon \approx 0.746826 - 0.746855$$
,

so $\epsilon\approx-0.000002,$ so extrapolation gives 0.746826-0.000002=0.746824 as a more accurate result.

4. Show that the midpoint rule for quadrature has degree of precision equal to one.

Solution: The midpoint approximation is

$$\int_{a}^{b} f(x)dx \approx (b-a) \cdot f(\frac{a+b}{2}).$$

When f(x) = 1, the midpoint approximation gives $(b - a) \cdot 1$, and $\int_a^b 1 dx = b - a$. When f(x) = x, the midpoint approximation gives

$$(b-a) \cdot \frac{(a+b)}{2} = \frac{1}{2}(b^2 - a^2) = \frac{1}{2}x^2\Big|_a^b = \int_a^b x dx.$$

When f(x) is degree 2, the midpoint approximation is no longer exact. For example, $\int_0^1 x^2 dx = 1/3$, but the midpoint approximation is $(1/2)^2 = 1/4$.

- 5. (a) Perform one step of Euler's method on the differential equation y' = y + t with $y_0 = 1, 0 \le t \le 0.5$ and h = 0.5.
 - (b) Repeat with the modified Euler's method.
 - (c) Use part (b) to estimate the error in your result from part (a).

Solution:

- (a) $w_0 = 1$, and m = 1 + 0 = 1, so $w_1 = w_0 + .5 * 1 = 1.5$.
- (b) With $m_1 = 1$ from part a, $m_2 = f(.5, 1.5) = 2$, and $m = (m_1 + m_2)/2 = 1.5$ so $\tilde{w}_1 = 1 + .5 * 1.5 = 1.75$.
- (c) Since modified Euler's method is higher order, we estimate the error in part (a) as |1.5 1.75| = 0.25.