Lab #5

Programming Problems

PURPOSE

This lab is an introduction to 68000 assembly language programming.  Students will write, assemble, download, execute, debug, and demonstrate assembly language programs that solve specific yet simple programming problems.  Many of these programs will help with future labs.

Upon completion of this lab, students will be able to do the following:

•
Write, test, and debug 68000 assembly language programs.

•
Manipulate data with registers and variables.

•
Write loops with various ending conditions.

•
Use 68000 operations for bit manipulation.

•
Use indirect addressing to work with arrays.

•
Use indexed addressing to work with tables of data.

•
Use built-in MON68K traps and subroutines.

PREPARATION

Prior to the scheduled lab session, read the following from your textbook:

•
Chapter 2 (Addressing Modes)

•
Chapter 5 (Programming Examples)

MATERIALS

•
Zip 100 disk for saving files.

•
68KMB 68000-based computer

•
Host computer and interface cables

•
68K Assembler


68000 cross assembler

•
BBEdit



Text editor (or equivalent)

•
macnetic term 


VT100 terminal emulator

68000 Programs:

•
PARITY



provided (to be entered)

•
ABC



to be written

•
POWER



to be written

•
SHIFT32



to be written

•
COMBINE


to be written

•
STRLEN



to be written

•
STRCMP



to be written

•
CODE7



to be written

INTRODUCTION

The following example demonstrates how problems are stated in this lab.

Problem:  PARITY


Write a 68000 program called PARITY to compute the parity of a 16-bit word.  Parity is "odd" if an odd number of bits are 1 in the data, and parity is "even" if an even number of bits are 1.  The data is stored in memory as a word-sized variable DATA at address $9000.  The result is a byte variable RESULT at address $9002.  Store $FF in RESULT for odd parity, and $00 in RESULT for even parity.

Sample Conditions:

Before:

Address

Contents

9000

36C2

9002

??

After:

9000

36C2

9002

FF

The sample conditions show the source data and the memory location where the result is stored.  The result of the addition is shown in the "after" contents of memory location $9002.  This allows the programmer to work through the problem by hand to verify the objective.

Below is one possible solution to this problem:

Solution:
*

*  PARITY.SRC  -  calculate parity of a word

*

*  Joe Student, Feb. 2002

*


ORG
$8000

DATA
EQU
$9000

RESULT
EQU
$9002


CLR.B
D1

;D1 calculates parity


MOVE.W
DATA,D0

;D0 holds data


MOVE.W
#16,D2

;D2 counts 16 bits

LOOP
LSR.W
#1,D0

;shift low bit into carry


BCC
ZERO

;if bit is zero, go on


NOT.B
D1

;bit is 1, change parity

ZERO
SUB.W
#1,D2

;decrement count


BNE
LOOP

;loop until count is zero


MOVE.B
D1,RESULT
;store parity in RESULT


TRAP
#14

;return to MON68K


END

PROCEDURE

Part 1:  Debugging

1.
Enter the example program in a file called PARITY.SRC.  Assemble the program, and transfer to the 68KMB.  Test it with different values at $9000 until you understand the operation of the program.

2.
The program executes in a loop with 16 iterations, which is a lot to trace through by hand.  To investigate the program operation, you will use a temporary breakpoint.  Read about the GT command on page 392 of your textbook.

3.
Store $A000 at location $9000.  Since the low bits are all 0, the loop will be mostly finished the first time it reaches the NOT.B D1 line.  Using GT, run the program until it reaches that NOT.B D1.

4.
Use MON68K's single-step facility (TR) to trace through the rest of the execution of the program, while completing the following table.  Notice that in filling out the table, we think of D0 as a 16-bit word, D1 as a byte, and D2 simply as a counter.

	PC
	Instruction Just Finished
	CCR
	D0
	D1
	D2

	
	
	X
	N
	Z
	V
	C
	
	
	

	8012
	NOT.B  D1
	1
	0
	0
	0
	1
	0002
	00
	3

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	


5.
Show the completed table to your lab instructor.

5.1  [image: image1.wmf]
Part II:  Programming Problems

Solve each of the following 68000 assembly language programming problems.  Make appropriate use of comments, labels, and assembler directives in your source code.  Enter your name, the date, and the problem name in comment lines at the top of each source file.

Thoroughly test your programs before demonstrating to your instructor.  Be prepared to demonstrate your program with sample data specified by your lab instructor.

Problem 1:  ABC


Write a program called ABC to print the uppercase alphabet.  Use TRAP #1 (see page 408) to output each character.

5.2  [image: image2.wmf]
Problem 2:  POWER


Write a program called POWER to calculate positive powers of positive integers.  The base is stored in the word variable BASE at location $9000.  The exponent is stored in the word variable EXPON at location $9002.  Calculate BASE raised to the EXPON power, and store the word-length result in location $9004.


Note:  MULU gives a longword result, but for this problem you may assume all values will fit inside a word (i.e. less than 65536).


Sample Conditions:


Before:


Address
Contents


9000
0005


9002
0004


9004
????


After:


Address
Contents


9000
0005


9002
0004


9004
0271


(Because 54 = 625 = $271)

5.3  [image: image3.wmf]
Problem3:  SHIFT32


Write a program called SHIFT32 to left shift (LSL) a 32-bit binary number until the most-significant bit of the number is 1.  The number is stored in the longword variable NUM at location $9000.  Store the shifted result in the longword variable RESULT at location $9004.  Store the number of left shifts required in the byte variable SHIFTS at location $9008.  If the number is zero, clear RESULT and SHIFTS.


Sample Conditions:


Before:


Address
Contents


9000
000030FF


9004
????????


9008
??


After:


Address
Contents


9000
000030FF


9004
C3FC0000


9008
12

5.4  [image: image4.wmf]
Problem 4:  COMBINE


Write a program called COMBINE to combine four nibbles into a word.  The four nibbles are stored as the low nibbles of byte variables at locations $9000-$9003.  Store the result in the word variable RESULT at location $9004.


Sample Conditions:


Before:


Address
Contents


9000
0A


9001
01


9002
00


9003
08


9004
????


After:


Address
Contents


9000
0A


9001
01


9002
00


9003
08


9004
A108

5.5  [image: image5.wmf]
Problem 5:  STRLEN


Write a program called STRLEN to determine the length of a string of characters.  The starting address of the string is contained in the longword variable STRLOC at location $9000.  The string is a sequence of bytes, terminating with an ASCII null character (00).  Place the length of the string (excluding the null character) in the word variable LENGTH at location $9004.


Sample Conditions:


Before:


Address
Contents


9000
00009800


9004
????


9800
48


9801
45


9802
4C


9803
4C


9804
4F


9805
00


After:


Address
Contents


9000
00009800


9004
0005


Note:  You can place the ASCII string in your program by enclosing the characters within single quotes after a DC.B directive.  Then set the address at $9000 to point to the appropriate location in memory.

5.6  [image: image6.wmf]
Problem 6:  STRCMP


Write a program called STRCMP to compare two strings to see if they are the same.  The starting addresses of the strings are contained in the longword variables STRING1 at $9000 and STRING2 at $9004.  Each string is a sequence of bytes, terminating with an ASCII null character (00).  If the two strings match, print "Same" to the screen, otherwise print "Different"  (See TRAP #2 on page 408).


Sample Conditions:


Before:


Address
Contents


9000
00009800


9004
00009900


9800
42


9801
45


9802
41


9803
52


9804
00


9900
42


9901
41


9902
52


9903
45


9904
00


After:


Different


Note:  Test carefully, especially for strings of different lengths.

5.7  [image: image7.wmf]
Problem 7:  CODE7


Write a program called CODE7 to convert an ASCII digit ('0'-'9') into a 7-segment LED code.  The program should print a prompt, read a key from the user (using TRAP #0), then echo the key back to the screen.  If the key typed is an ASCII digit (use ISDIGIT), convert it to a 7-segment LED code as shown below, and then print out the byte (use OUT2HX).  See page 408-409 for explanations of these routines.

[image: image9..pict]
A 7-segment LED has seven light-emitting diodes (LEDs) arranged as shown, and is controlled by one byte of data.  Bit 0 controls segment a, and so on, up to bit 6 which controls segment g.  The segments are ON for a 1, and OFF for a 0.  Bit 7 is always OFF.  You'll need to construct your own table of 7-segment codes.


Sample Execution:


Input a digit: 9


7B

5.8  [image: image8.wmf]
CONCLUSION

Having completed this lab, students are capable of writing small 68000 programs in assembly language.





33
48

