Microprocessors

Homework 6 Due Wednesday, October 19

ADDRESS DECODING

Read 2.5, 2.6, 7.1-7.6, 8.7-8.11, 9.1-9.3

Do Chapter 2 # 28, Chapter 8 # 2

1. Consider this code from Lab #6:

DUART	EQU	\$00C001
SRA	EQU	2
RBA	EQU	6
	MOVE.L	#DUART,A0
LOOP	MOVE.B	SRA(A0),D7
	AND.B	#1,D7
	BEQ	LOOP
	MOVE.B	RBA(A0),D0

What address is read by MOVE.B SRA(A0), D7?

What address is read by MOVE.B RBA(A0), D0?

- 2. The 68000 has no "A0" pin for address bit #0. Instead, it has UDS and LDS . Explain the advantages of this design.
- 3. Fill out the following table with "High" or "Low" to show what values the 68000 outputs will have while executing these instructions:

Instruction	UDS value	LDS value	R/W value
MOVE.B \$8200,D3			
MOVE.B D3,\$9001			
MOVE.B \$813B,D2			
MOVE.W D0,\$A000			
MOVE.W \$8FC4,D5			

4. The byte at \$C01B on the 68KMB computer is an input port, and might be connected to eight switches, one for each bit. Write a code fragment that loops until bit 3 of the input port is 1.

Bryan Clair