SLU Missouri Collegiate Math Team – Mock Exam 2017 March 25, 2017 Explain your work carefully to maximize credit.

PROBLEMS:

1. The number 99 was multiplied by an integer k to obtain an integer of seven decimal digits, but two of the digits got blotted out on the paper. The product was 62*ab*427, but the digits a and b are illegible. Determine all possible values of a and b.

Source: Iowa Collegiate Mathematics Competition, 2017.

2. Find the sum of the series

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{12} + \cdots,$$

where the terms are the reciprocals of the positive integers whose only prime factors are twos and threes.

Source: Missouri Collegiate Mathematics Competition, 2014.

- 3. Notice that 73 can be written as a sum of two consecutive positive integers, 73 = 36 + 37. Prove that no longer sum of consecutive positive integers equals 73.
- 4. Suppose that the function f satisfies f'(x) = 1 + f(x) for all x. If f(2) = 3 find:
 - (a) $f^{(10)}(2)$ where $f^{(10)}$ denotes the 10th derivative of f;
 - (b) *f*(3).

Source: Iowa Collegiate Mathematics Competition, 2017.

5. For real a > 0 define the sequence $\{x_n\}$ by

$$x_{n+1} = a(x_n^2 + 4), \quad x_0 = 0.$$

Determine necessary and sufficient conditions on a for $\lim_{n\to\infty} x_n$ to exist and be finite. Source: Missouri Collegiate Mathematics Competition, 2012.

١.	Since the product ends in 27, the product is 73 less than a multiple of 100).
	This means K = 73 mod 100.	
	Also 62626 so $k \ge 62626$ and 63519	
	594 594 26000 360 198 299	
	620 GLD	
	620 610 Hence $62626 \le k \le 63514$	
	Hence $62626 \le k \le 63514$.	
	The first possibility is 626/3:	
	62673 '	
	<u>99</u> 564057	
	<u>564057</u> 6204627	
	Other possibilities add 100, 200, etc. to this which increases the product	
	by 900 pack timp	
	6204627 $6254(27)$	
	6274327 62732927	
	6204627 6254127 6214527 6264027 6224427 6273927 6234327 6283827 6244227 6293727	
	6244227 6293727	
	Only 6224427 fits, so ab ion only be 24.	
2.	$let \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	lhen	
	$\frac{S}{2} = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{12} + \frac{1}{16} + \frac{1}{18} + \frac{1}{24} + \cdots$	
	which includes any terms in F except reciprocals of 3t, K=0.	
	Hence,	
	which implies	<u> </u>
	$S' = \frac{3}{5}$ and $S = 3$	Π

2	
3.	If 73 is a sum of k consecutive positive integers starting with x then
	$x + (x + 1) + \dots + (x + k - 1) = kx + (k - 1) k = 73.$
	If this equation holds then $73 - \frac{(k-1)k}{2} \equiv 0 \mod k$, thich we can
	check without knowing x. 2
	Notice if k is odd then $kx + \frac{(k-1)k}{2} \equiv 0 \mod k$, while $73 \not\equiv 0 \mod k$ for $k \geq 3$ because 73 is prime. So odd $k \geq 3$ is impossible.
	Notice if $X = L$ and $k = 12$ then $k_X + \frac{k-1}{2}k = 78 > 73$. So only $k \le 10$ need
	be considered.
	Finally, we compute 73-(K-1) K mod K for K= 4, 6, 8, 10.
	K 4 6 8 10
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Since none are zero, 73 cannot be written as a sum of k consecutive positive integers for any k >2.
4.	Let $y = f(x)$ and rewrite the DE as $\frac{5y}{y} - y = 1$. The characteristic equation is $r-1=0$ so e^{x} is a homogeneous solution. Using the method of undetermined coefficients we assume $y(x) = b$
	The characteristic equation is r-1=0 so ex is a homogeneous solution.
	is a particular solution
	$(b)' - b = 1$ \longrightarrow $b = -1$
	Thus the general solution is y(x) = Aex -1.
	Since $y(z)=3$, we find that $3 = Ae^2 - 1$ so $Ae^2 = 4$. ($A = 4e^{-2}$.)
	(a) Since $f(x) = 4e^{2}e^{x} - 1 \implies f^{(10)}(x) = 4e^{-2}e^{x} \implies f^{(10)}(z) = 4$. (b) $f(3) = 4e^{-2}e^{3} - 1 = 4e - 1$.
5.	If a limit exists they $x = ax^2 + 4a$ so $ax^2 - x + 4a = 0$ has a real solution. Thus a necessary condition is $1 - 16a^2 > 0$ or $a^2 < \frac{1}{16}$ or $0 < a < \frac{1}{4}$.
	Thus a necessary condition is 1-10a->0 or a < 16 or 0 <a<4.< td=""></a<4.<>
	If $0 < a < \frac{1}{4}$ then the solutions are $x = \frac{1}{2a} + \frac{\sqrt{1 - 16a^2}}{2a}$ so $0 < x < \frac{1}{4}$
	$(1) X_{h+1} - X_h = a(x_h^2 - x_{h+1}^2) X_1 - X_0 = 4a > 0 \text{so induction implies } X_{h+1} = X_h.$
	$(2) X_{1} = 4a < 2 $ $X_{011} = b(x^{2} + a) < \frac{1}{4}(4 + a) = 2$
	(2) $\chi_1 = 4a < 2$ $\chi_{n+1} = a(\chi_n^2 + 4) \le \frac{1}{4}(4+4) = 2$ so $\chi_n \le 2$. Since χ_n is bounded, monotonic it must converge.