
SLU Math Team 2009 Qualifying Problems
Do as much as you can, and return your work to Dr. Clair on or before

Tuesday, March 31.

1. A 4×4×4 cube is made from 32 white unit cubes and 32 black unit cubes.
What is the largest possible fraction of the surface area that can be black?

Solution. Use the black cubes for the 8 corners and 12 × 2 = 24 edges.
Then each face is 3/4 black, so the surface is 3/4 black. (UNCC Math
Contest, 1997 # 14).

2. The function f satisfies f(0) = 2009 and has the property that the tangent
line to f at x crosses the x-axis at x + 2009. Find f(x).

Solution. The tangent line at p is l(x) = f ′(p)(x − p) + f(p). Plugging
in (x + 2009, 0) gives 0 = 2009f ′(p) + f(p), so f ′(x) = −f(x)/2009. The
solution to this differential equation is f(x) = ke−x/2009. Using f(0) =
2009, we see that k = 2009 and f(x) = 2009e−x/2009.

3. Suppose a, b, and c are integers, and suppose ax2 + bx + c = 0 has a
rational solution. Prove that at least one of the coefficients a, b, and c
must be even.

Solution. Let x = p/q in lowest terms, so that at least one of p and q is
odd. Then

a(p/q)2 + b(p/q) + c = 0

so
ap2 + bpq + cq2 = 0.

If p and q are both odd, then at least one of a, b, and c is even or else
ap2 + bpq + cq2 is the sum of three odd numbers and cannot be zero. If
p is odd but q is even, then bpq + cq2 is even, so ap2 must be even, so a
is even. If q is odd, but p is even, then ap2 + bpq is even, so cq2 must be
even, so c is even. Using modular arithmetic (mod 2) is slightly cleaner.
(UIUC Undergraduate Math Contest, 2004)

4. Equilateral triangles whose side lengths are 1, 3, 5, 7, . . . are placed so that
their bases lie corner to corner along a straight line. Show that the vertices
lie along a parabola.

Solution. Assume without loss of generality the bases lie on the posi-
tive x-axis with the first corner at the origin. Then the vertices are at
(1/2,

√
3/2), (5/2, 3

√
3/2), (13/2, 5

√
3/2), . . . , (k2−k+1/2, (2k+1)

√
3/2), . . . .

Setting x = ay2 + c, plugging in points, and solving for a and c, we find
that these points all satisfy x = 1

3y2 + 1
4 . (Larson 8.2.8)
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Solution. ∫ 1

0

dx

xx
=

∫ 1

0

e−x log xdx (1)

=
∫ 1

0

∞∑
n=0

(−x log x)n

n!
dx (2)

=
∞∑

n=0

(−1)n

n!

∫ 1

0

xn logn(x)dx. (3)

The interchange of sum and integral is justified by uniform convergence.

Let Sj,k(x) = xj logk(x). Claim that∫ 1

0

Sj,k(x)dx =
(−1)kk!

(j + 1)k+1
.

The proof is by induction on k, with k = 0 clear by the power rule. Using
integration by parts,∫ 1

0

Sj,k(x)dx =
1

j + 1
Sj+1,k(x)

]1

0
− k

j + 1

∫ 1

0

Sj,k−1(x)dx (4)

= − k

j + 1

∫ 1

0

Sj,k−1(x)dx (5)

= − k

j + 1
(−1)k−1(k − 1)!

(j + 1)k
(6)

=
(−1)kk!

(j + 1)k + 1
, (7)

using limx→0+ Sj,k(x) = 0 for j > 0 and all k. This proves the claim.

Finally,∫ 1

0

dx

xx
=
∞∑

n=0

(−1)n

n!

∫ 1

0

Sn,n(x)dx =
∞∑

n=0

(−1)n

n!
(−1)nn!

(n + 1)n+1
=
∞∑

n=1

1
nn

.

(Amer. Math Monthly, 59:2 pp 108-109, see Bonar & Khoury, Real Infinite
Series, Gem 30)
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