
PUTNAM PROBLEM-SOLVING SEMINAR WEEK 1:
INDUCTION AND THE PIGEONHOLE PRINCIPLE

The Rules. These are way too many problems to consider. Just pick a few problems you
like and play around with them.

You are not allowed to try a problem that you already know how to solve. Otherwise,
work on the problems you want to work on. If you would like to practice with the Pi-
geonhole Principle or Induction (a good idea if you haven’t seen these ideas before), try
those problems.

The Hints. Work in groups. Try small cases. Plug in smaller numbers. Do examples.
Look for patterns. Draw pictures. Use lots of paper. Talk it over. Choose effective nota-
tion. Look for symmetry. Divide into cases. Work backwards. Argue by contradiction.
Consider extreme cases. Eat pizza. Modify the problem. Generalize. Don’t give up after
five minutes. Don’t be afraid of a little algebra. Sleep on it if need be. Ask.

Induction problems.

Let a be an integer, and P(n) a proposition (statement) about n for each integer n ≥ a.
The principle of mathematical induction states that if

(i) P(a) is true, and
(ii) for each integer k ≥ a, P(k) true implies P(k + 1) true, then P(n) is true for all

integers n ≥ a.

This principle enables us, in two simple steps, to prove an infinite number of propositions.
It works best when you have observed a pattern and want to prove it.

1. Prove that 1 + 2 + · · ·+ n = n(n + 1)/2.

2. Prove that the sum of the entries in the nth row of Pascal’s triangle is 2n (where the top
row is “row 0”).

3. Let f(n) be the number of regions which are formed by n lines in the plane, where no
two lines are parallel and no three meet in a point (e.g. f(4) = 11). Find a formula for
f(n).

4. Find a formula for the sum of the first n odd numbers.

5. Show that for n ≥ 6 a square can be dissected into n smaller squares, not necessarily
all of the same size.

6. Show that 12 + 32 + 52 + · · · + (2n − 1)2 = n(4n2 − 1)/3.
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7. If a > 0 and b > 0, then show that (n − 1)an + bn ≥ nan−1b, n a positive integer, with
equality if and only if a = b.

8. (a) Prove that 1 + 1
√

2
+ · · ·+ 1

√

n
< 2

√
n. (b) Prove that 2!4! · · · (2n)! ≥ ((n + 1)!)n.

9. Prove that n5/5 + n4/2 + n3/3 − n/30 is an integer for n = 0, 1, 2, . . . .

10. Prove the arithmetic mean - geometric mean inequality (AM-GM): Suppose a1, . . . , an are
n positive real numbers. Then

a1 + · · ·+ an

n
≥ (a1 · · ·an)1/n.

(Call this statement AMGM(n).) Prove AMGM(n) for all n as follows.

(a) Prove it for n = 1 and n = 2.
(b) If it is true for n = k, prove that it is true for n = k − 1. (Hint: substitute an =

(a1 + · · · + an−1)/(n − 1) in AMGM(n) and see what happens.)
(c) If it is true for n = k, prove that it is true for n = 2k.
(d) Conclude!

11. If each person, in a group of n people, is a friend of at least half the people in the
group, then it is possible to seat the n people in a circle so that everyone sits next to
friends only.

12. Suppose n coins are given, named C1, . . . , Cn. For each k, Ck is biased so that, when
tossed, it has probability 1/(2k + 1) of falling heads. If the n coins are tossed, what is the
probability that the number of heads is odd? Express the answer as a rational function of
n.

Pigeonhole principle problems.

If kn + 1 objects (k ≥ 1) are distributed among n boxes, one of the boxes will contain at
least k + 1 objects.

13. Given any n+ 1 distinct integers between 1 and 2n, show that one of them is divisible
by another. Is this best possible, i.e., is the conclusion still true for n integers between 1

and 2n?

14. Consider any five points P1, . . . , P5 in the interior of a square S of side length 1. Show

that one can find two of the points at distance at most 1/
√

2 apart. Show that this is the
best possible.

15. Consider any five points P1, . . . , P5 in the interior of an equilateral triangle T of side
length 1. Show that one can find two of the points at distance at most 1/2 apart. What if
there were four points?

16. Show that there are two people in New York City, who are not totally bald, who have
the exact same number of hairs on their head.

2



17. Let A be any set of 20 distinct integers chosen from the arithmetic progression 1, 4, 7,
. . . , 100. Prove that there must be two distinct integers in A whose sum is 104.

18. Show that if there are n people in the party, then two of them know the same number
of people (among those present).

19. (a) Prove that in any group of six people there are either three mutual friends or three
mutual strangers.

(b) Seventeen people correspond by mail with one another — each one with all the rest.
In either letters only three topics are discussed. Each pair of correspondents deals with
only one of the topics. Prove that there are at least three people who write to each other
about the same topic.

20. Prove that no seven positive integers, not exceeding 24, can have sums of all subsets
different.

21. Suppose there are given nine lattice points (points with integral coordinates) in three-
dimensional Euclidean space. Show that there is a lattice point on the interior of one of
the line segments joining two of these points.

22. Let α be irrational, and for n ≥ 1, let an = (nα mod 1) ∈ [0, 1). (In other words, an is
the “decimal part” of nα.) Let us explain why { an : n = 1, 2, . . . } is dense in [0, 1] when α

is irrational.

23. Let aj, bj, cj be integers for 1 ≤ j ≤ N. Assume, for each j, at least one of aj, bj, cj is
odd. Show that there exist integers r, s, t such that raj + sbj + tcj is odd for at least 4N/7

values of j, 1 ≤ j ≤ N.

24. Let A and B be 2× 2 matrices with integer entries such that A, A + B, A + 2B, A + 3B,
and A + 4B are all invertible matrices whose inverses have integer entries. Show that
A + 5B is invertible and that its inverse has integer entries.

25. Prove that any convex pentagon whose vertices (no three of which are collinear) have
integer coordinates must have area ≥ 5/2.

This handout can (soon) be found at

http://math.stanford.edu/˜vakil/putnam04/

E-mail address: vakil@math.stanford.edu
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