Series Problems

1. Sum the infinite series
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Plugging in = = 1 gives

2. Sum the infinite series
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Solution. The sum is 1/3. Using partial fractions,
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Then the N*" partial sum telescopes to equal §(1 — 1/(3N + 1)), which
has limit 1/3 as N — oo. O

3. (MCMC 20081 #5) Evaluate
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for n > 2. What is this series when n = 17
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For n = 1, the series is a harmonic series
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which is divergent, and the formula 1/(n—1) would indicate that the series
should be divergent. O

. (MCMC 20091#4) Find the value of the infinite product
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Solution. We rewrite the nth partial product so as to reveal two sets of
telescoping products:
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Hence,
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. (MCMC 2011#5) Evaluate the series
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and express it as a rational number.

Solution. Let
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The series in the problem is S(1/2011). First, check the following identity:
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Using this identity, the partial sums telescope:

s = (- V(U Y (L
N =122 1= 22 1—22 1—2¢ 1—a22¥ 1 — g2V
1 1

1—z 11— 22"

so that L
X
= 1. = —_ 1 = .
S(z) Ngnoo Sn () 1—=x 1—2
Finally, S(1/2011) = (1/2011)/(1 — 1/2011) = 1/2010. O

. Let p and ¢ be real numbers with 1/p—1/g=1,0<p < % Show that
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Solution. First, note that 0 < p < % implies 0 < ¢ < 1. So, when p < 1/2,
g < 1 the two series sum (by standard power series) to —log(1 — p) and
log(1+ q).

Manipulating 1/p —1/g =1 gives 1 —p = p/q and 1 + ¢ = ¢/p, and so

—log(1 —p) = —log(p/q) = log(q/p) = log(1 + q)



When p = 1/2, the series in p still sums to —log(1l — p) = log2. Here,
g = 1 which is outside the radius of convergence of log(1 + ¢). However,
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is well known (it follows from Abel’s Limit Theorem). O

. Repeatedly toss a fair coin. What is the probability that the first head
occurs on an even-numbered toss?

Solution. It is % The first head occurs on toss n if there are n — 1 tails

followed by a head. This has probability (%)"*1 . % = 2% Then the
probability the first head occurs on an even numbered toss is
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. Sum the series
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Solution. Let A, =1+22+333+---+n(11...1). Then
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Define S, (z) = x + 222 + 32% + - - - nz™. Then
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Finally,
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9. Find the limit as n — oo of the sum
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Solution. The solution is log(2). The sum S, satisfies.
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By direct integration, both integrals have limit log(2).



