
Pigeonhole Principle Problems
These are some solutions to problems from Ravi Vakil’s handout.

13. Solution. Let S be any set of n + 1 distinct integers between 1 and 2n.
Define n sets Ti = {i, 2i, 4i, 8i, 16i, . . . } with i = 1, 3, 5, . . . , 2n−1. The set
T1 ∪ T3 ∪ T5 ∪ · · · ∪ T2n−1 contains all integers from 1 to 2n, and therefore
contains all n+ 1 elements of S. By the pigeonhole principle, some set Ti
contains at least two elements x, y ∈ S. If x < y then y = 2kx and so x
divides y. Similarly if y < x, then y divides x. So, one of the elements of
S divides another.

This is the best possible, since none of the n integers n+ 1, n+ 2, . . . , 2n
divide each other.

14. Solution. Dissect the triangle into four smaller equilateral triangles:
4
44.

Two of the five points must be in one of the smaller triangles. Each of these
has side length 1/2, so the two points are within 1/2 of each other.

16. Solution. A six-inch radius sphere has area 4π62 ≈ 450 square inches,
which would be a really huge area for a human head. If you can fit 100
hairs along one linear inch, you can get 10000 hairs in a square inch (again,
a vast overestimate). This means that a human head has less (probably
much less) than 4,500,000 hairs. It seems reasonable that of the more than
8 million people in New York, there are at least 4.5 million who are not
bald. So, we have more than 4.5 million hirsute people, and at most 4.5
million possible hair counts. The pigeonhole principle implies that two
people have the same hair count.

17. Solution. Consider the pairs (4, 100), (7, 97), (10, 94), . . . , (49, 55). There
are sixteen such pairs. The set A may contain 1 and 52, but has at least
18 other numbers which must be contained in these sixteen pairs. By
the pigeonhole principle, one pair must contain two numbers from A, and
those two numbers add to 104.

18. Solution. We assume that knowing is a symmetric relation: If person A
knows person B, then person B knows person A. Without this assump-
tion, the problem is false, since we may have a party with two people
where A knows zero people and B knows one person, A.

We also make the assumption that knowing yourself does not count, and
‘knowing people’ means knowing other people. This assumption is unim-
portant, because the alternative simply adds 1 to all the numbers.

Let Ki be the number of people that person i knows. There are apparently
n possibilities for Ki, since a person may know 0, 1, . . . , n−1 other people.
However, it is not possible to have a party where one person (the stranger)
knows 0 people and someone else knows n− 1 people (the host): To know
n− 1 people, the host would have to know the stranger, but the stranger
does not know the host.
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Therefore, there are only n−1 possibilities for Ki, and there are n numbers
K1, . . . ,Kn. Two of these must be the same.

24. Solution. For an invertible matrix with integer entries, the inverse matrix
has invertible entries if and only if the determinant of the matrix is ±1
(this follows from Cramer’s Rule).

Let p(k) = det(A+kB). p is a quadratic polynomial in k. The hypothesis
say that p(0), p(1), p(2), p(3), p(4) ∈ {±1}. By the pigeonhole principle,
there must be distinct k1, k2, k3 ∈ {0, 1, 2, 3, 4} with p(k1) = p(k2) =
p(k3) = s, where s = ±1. A quadratic polynomial which takes the same
value at three distinct points must be constant (consider p(k) − s which
has three roots). So

det(A+ kB) = p(k) = s

for all k, and in particular, det(A+ 5B) = s = ±1.

25. Solution. This is problem A3 from the 1990 Putnam exam. There are
solutions online.
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