
Number Theory and Modular Arithmetic Problems

1. Suppose a prime number p > 2 is the sum of two squares. Show that p−1
is divisible by four.

Solution. An even number squared is divisible by 4. An odd number
squared has remainder 1 when divided by 4, since (2k+1)2 = 4k2+4k+1.
Alternately, one says that 0 and 1 are the only squares mod 4. If p is the
sum of two squares, p has remainder 0, 1, or 2 after division by 4. But p
is odd, so p must have remainder 1 after division by 4, or p− 1 is divisible
by 4.

2. Determine all integral solutions of a2+b2+c2 = a2b2. (Hint: Work modulo
4).

Solution. The only solution is a = b = c = 0. Modulo 4, squares are either
0 or 1. Then a2b2 is 0 or 1 (mod 4). If a2b2 ≡ 1 (mod 4) then a2 ≡ 1
(mod 4) and b2 ≡ 1 (mod 4), so that a2 + b2 + c2 (mod 4) is either 2 or
3, and cannot equal a2b2. Thus a, b, and c must all be even.

Now suppose a = 2a1, b = 2b1, and c = 2c2 are all even. Then 4a21 +
4b21 + 4c21 = 16a21b

2
1, so that a21 + b21 + c21 = 4a21b

2
1. Then a21 + b21 + c21 ≡ 0

(mod 4), so that a1 = 2a2, b1 = 2b2, and c1 = 2c2 are all even. We then
get a22 + b22 + c22 = 16a2b2, and a2, b2, c2 must be even as well. Repeat this
process n times to produce a = 2nan, b = 2nbn, c = 2ncn for any n. Since
n is arbitrary, this is only possible if a, b, and c are all zero.

3. Prove that for any set of n integers, there is a subset of them whose sum
is divisible by n.

Solution. Let the numbers be a1, a2, . . . , an. Form S1 = a1, S2 = a1 + a2,
up to Sn = a1 + a2 + · · · + an. If one of the Sk ≡ 0 (mod n) then Sk is
divisible by n and the problem is soved. If not, then the S1, . . . , Sn are
n numbers, each in one of the n − 1 non-zero equivalence classes modulo
n. By the pigeonhole principle, two of these are the same, say Si ≡ Sj

(mod n) and assume i < j (without loss of generality). Then Sj − Si ≡ 0
(mod n), so n divides ai+1 + · · ·+ aj and the problem is solved.

4. Suppose f(x) is a polynomial with integral coefficients, and none of the
integers f(1), f(2), . . . , f(2007) is divisible by 2007. Prove that f has no
integral zero.

Solution. Since f has integer coefficients, if a ≡ b (mod 2007), then f(a) ≡
f(b) (mod 2007). Suppose f has an integral zero, say f(n) = 0. Then
there is an integer 1 ≤ m ≤ 2007 with n ≡ m (mod 2007). Then
0 = f(n) ≡ f(m) (mod 2007), so that f(m) is divisible by 2007, a contra-
diction. Thus f has no integral zero.
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5. A lattice point is a point whose coordinates are both integers. If a and b
and chosen randomly from 1, 2, . . . , 100. What is the probability that the
segment from (0, a) to (b, 0) contains an even number of lattice points?

Solution. The line joining (0, a) to (b, 0) is y = −a
bx + a. If (x,−a

bx + a)
is a lattice point, then so is (b−x,−a

b (b−x) +a) = (b−x, a
bx). So lattice

points on the segment from (0, a) to (b, 0) occur in pairs, with the possible
exception of the point ( b

2 ,
a
2 ). The segment from (0, a) to (b, 0) contains an

odd number of lattice points if and only if ( b
2 ,

a
2 ) is a lattice point, which

occurs if and only if both a and b are even. So, the probability of an odd
number of lattice points is 1

2 ·
1
2 = 1

4 , and the probability that the segment
contains an even number of lattice points is 3

4 .

6. Find the largest integer that is equal to the product of its digits.

Solution. If the number n has k > 1 digits, and the leftmost digit is a,
then n ≥ a · 10k−1. Since the k − 1 rightmost digits are all less than 10,
their product is strictly less than 10k−1, so n is larger than the product of
its digits. Thus, only single digit numbers can equal the product of their
digits, and the largest such number is 9.

7. Imagine you are at a school that has 100 lockers, all shut. Suppose the first
student goes along the row and opens every locker. The second student
then goes along and shuts every other locker beginning with locker number
2. The third student changes the state of every third locker beginning
with locker number 3. (If the locker is open the student shuts it, and if
the locker is closed the student opens it.) The fourth student changes the
state of every fourth locker beginning with number 4. Imagine that this
continues until the 100 students have followed the pattern with the 100
lockers. At the end, which lockers will be open and which will be closed?

Solution. Locker n is changed for every divisor of n. If k divides n then
n/k also divides n, so unless k = n/k, the divisors of n occur in pairs. If
k = n/k then n = k2. So, if n is a square, it has an odd number of divisors
and the locker will be open. If n is not a square, it has an even number of
divisors and the locker will be closed. Thus all lockers are closed except
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, which are open.

8. Do there exist 100 consecutive integers so that each is divisible by a perfect
cube bigger than 1?

9. Show that the sequence 11, 111, 1111, 11111, . . . contains no perfect squares.

Solution. Since 100 ≡ 0 (mod 4), any of these numbers is equivalent to 11
(mod 4), and so is equivalent to 3 (mod 4). However, since 02 ≡ 0, 12 ≡
1, 22 ≡ 0, and 32 ≡ 1 (mod 4), there are no squares equivalent to 3
(mod 4). None of the numbers in the sequence are perfect squares.

2



10. Define a sequence {ai} by a1 = 3 and ai+1 = 3ai for i ≥ 1. Which integers
between 00 and 99 inclusive occur as the last two digits of infinitely many
ai?

Solution. Just by taking powers of 3 (mod 100), it is easy to see that

320 ≡ 1 (mod 100), and so 33
4

= 381 = 3 · 320320320320 ≡ 3 (mod 100).
Now for any x ≥ 4,

33
x

= (33
4

)3
x−4

≡ 33
x−4

(mod 100)

Repeatedly applying this,

33
33

= 33
27

≡ 33
3

(mod 100)

A simple induction proof now shows that for any tower of exponents,

33
. .

.
3

≡ 33
3

(mod 100)

So, for n ≥ 3,

an ≡ 33
3

≡ 37320 ≡ 37 ≡ 87 (mod 100)

and 87 is the only number that occurs as the last two digits of an for
n ≥ 3.
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