L’Hopital’s Rule

Theorem (L’Hopital’s rule). If lim,_,, f(z) = lim,_,, g(x) = 0, then
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provided the derivatives in question exist for all x # a and provided the right

hand limit exists.

Some limits can be converted to this form by first taking logarithms, or by

substituting 1/z for x.

Problems

1. Evaluate
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Solution. Let x = 27 ™. Then the limit becomes
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2. Evaluate the following limits:
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. Evaluate
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where p, = (1+1/n)" and P, = (14 1/n)""1.
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. Evaluate

where a > 1.

Solution.
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. Let f(t) and f'(t) be differentiable on [a, 2] and for each x suppose there
is a number ¢, such that a < ¢, < z and

/ " F0)dt = fen)e - a).

Assume that f’(a) # 0. Then prove that
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Solution. This is from the MCMC 2006 Session I, problem 5. See their
solution. O

6. Calculate "
lim a:/ et = dt.
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Now the limit is expressed as an indeterminate form 22, so apply L’Hopital’s
Rule, the product rule, and the fundamental theorem of calculus, to get:
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7. Prove that the function y = (22)%, y(0) = 1, is continuous at z = 0.

Solution.
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Which shows that y — y(0) as x — 0, so y is continuous at 0. O



