
Mathematical Induction

The natural numbers are the counting numbers: 1, 2, 3, 4, . . .. Mathematical
induction is a technique for proving a statement - a theorem, or a formula -
that is asserted about every natural number. For example,

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.

This asserts that the sum of consecutive numbers from 1 to n is given by the
formula on the right. We want to prove that this will be true for n = 1, n = 2,
n = 3, and so on. Now we can test the formula for any given number, say n = 3:

1 + 2 + 3 =
3× 4

2
= 6,

which is true. It is also true for n = 4:

1 + 2 + 3 + 4 =
4× 5

2
= 10.

But how are we to prove this rule for every value of n? The method of proof is
the following:

Principle of Mathematical Induction.
Suppose

1) (The base case) The statement is true for n = 1;

2) If the statement is true for n, then it is also true for n+ 1;

Then the statement is true for every natural number n.

When the statement is true for n = 1, then according to 2), it will also be
true for n = 2. But that implies it will be true for n = 3; which implies it will
be true for n = 4. And so on. It will be true for every natural number. To
prove a statement by induction, then, we must prove parts 1) and 2) above.

The hypothesis of part 2) - ”The statement is true for n” - is called the
inductive assumption, or the inductive hypothesis. It is what we assume when
we prove a theorem by induction.

Example 1. Show that

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
. (1)

Proof. For n = 1, we have 1 = 1(1+1)
2 which is true.

Suppose (the induction hypothesis) that the statement (1) is true for n:

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.



Then

1 + 2 + 3 + . . .+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
n2 + n+ 2n+ 2

2

=
n2 + 3n+ 2

2

=
(n+ 1)(n+ 2)

2
,

which proves the statement (1) for n + 1. By induction, the statement (1) is
true for all natural numbers n.

For the base case of induction, it is not necessary to use n = 1. Any other
base number k will work, and the result of induction will be that the statement
is true for any n ≥ k.

There is also a technique called strong induction, in which the inductive
hypothesis is that the statement is true for 1, 2, 3, . . . , n.

Problems

1. Prove that n! > 2n for all n ≥ 4.

Solution. When n = 4,

4! = 24 > 16 = 24,

so the statement is true. Assume n! > 2n. Then

(n+ 1)! = (n+ 1)n! > (n+ 1)2n > 2 · 2n = 2n+1

(where we use the fact that n + 1 > 2). By induction, n! > 2n for all
n ≥ 4.

2. Prove that for any integer n ≥ 1, 22n − 1 is divisible by 3.

3. Prove that all numbers in the sequence 1007, 10017, 100117, 1001117, 10011117, . . .
are divisible by 53.

Solution. Let an = 100111 · · · 117 where there are n 1’s. Check a0 =
1007 = 53 ∗ 19. Now suppose an is divisible by 53. Generally, an+1 =
((an − 7) + 1) ∗ 10 + 7 = 10an − 53. Since both 53 and an are divisible by
53, so an+1 is as well.



4. Let Fk be the Fibonacci numbers defined by F0 = 0, F1 = 1, and Fk =
Fk−1 + Fk−2 for k > 1. Show that:

n∑
i=0

F 2
i = FnFn+1

5. Let r be a number such that r + 1/r is an integer. Prove that for every
positive integer n, rn + 1/rn is an integer.

6. Prove that any square can be dissected into n smaller squares (possibly of
differing sizes) for every n ≥ 6.

Solution. First, if you can dissect a square into n squares, then you can
dissect into n+ 3 squares as follows: Choose any square in the dissection,
and replace it with four squares, each one quarter of the original square.
Since a square can be dissected into one square, induction proves that a
square can be dissected into 1, 4, 7, 10, 13, . . . squares. A square can be
dissected into six squares as follows:

By induction, then, a square can be dissected into 6, 9, 12, 15, 18, . . . squares.
Finally, a square can be dissected into eight squares as follows:

By induction, a square can be dissected into 8, 11, 14, 17, . . . . In summary
a square can be dissected into 1, 4, 6, 7, 8, 9, 10, . . . squares, a list which
includes every number greater than or equal to six.

7. Show that: √
2 +

√
2 +

√
2 + · · ·+

√
2 = 2 cos

( π

2n+1

)
,

where there are n 2s in the expression on the left.

8. If each person, in a group of n people, is a friend of at least half the people
in the group, then it is possible to seat the n people in a circle so that
everyone sits next to friends only.



9. Prove Bernoulli’s Inequality :

(1 + x)n ≥ 1 + nx

for every real number x ≥ −1 and every natural number n.

10. Prove that 22
n

+ 32
n

+ 52
n

is divisible by 19 for all positive integers n.

11. Prove that n5/5 + n4/2 + n3/3− n/30 is an integer for n = 0, 1, 2, . . .

12. You have coins C1, C2, . . . , Cn. For each k, Ck is biased so that, when
tossed, it has probability 1/(2k + 1) of falling heads. If the n coins are
tossed, what is the probability that the number of heads is odd? Express
the answer as a rational function of n.

Solution. Putnam Exam, 2001, problem A2


