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In many problems, you are asked to show that something exists, but are not
required to give a specific example or formula for the answer. Often in this sort
of problem, trying to produce a formula or specific example will be impossible.

The following three theorems are all powerful because they guarantee the
existence of certain numbers without giving specific formulas.

Theorem 1 (Intermediate Value Thoerem). If f is a continuous function on
the closed interval [a, b], and if d is between f(a) and f(b), then there is a number
c ∈ [a, b] with f(c) = d.

As an example, let f(x) = cos(x) − x. Since f(0) = 1 and f(π) = −1 − π,
there must be a number t between 0 and π with f(t) = 0 (so t satisfies cos(t) = t).
It is not hard to get a decimal approximation to t but there is no simple formula
for t using standard functions.

Theorem 2 (Rolle’s Theorem). Suppose f is continuous on [a, b] and differen-
tiable on (a, b), and suppose that f(a) = f(b). Then there is a number c ∈ [a, b]
with f ′(c) = 0.

Theorem 3 (The Mean Value Theorem). Suppose f is continuous on [a, b] and
differentiable on (a, b). Then there is a number c ∈ [a, b] with

f(b)− f(a)

b− a
= f ′(c).

Problems

1. Suppose that f is continuous on [0, 1] and f(0) = f(1). Let n be any
natural number. Prove that there is some number x so that

f(x) = f

(
x+

1

n

)
.

Solution. Define g(x) = f(x) − f(x + 1/n). Consider the set of numbers
S = {f(0), f(1/n), f(2/n), . . . , f(1)}. Let k be such that f(k/n) is the
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largest number in S. Suppose that k 6= 0 and k 6= n. Then g(k/n) =
f(k/n)− f((k + 1)/n) ≥ 0, and g((k − 1)/n) = f((k − 1)/n)− f(k/n) ≤
0. By the IVT, there is c ∈ [(k − 1)/n, k/n] with g(c) = 0, so that
f(c)− f(c+ 1/n) = 0, or f(c) = f(c+ 1/n) as desired.

Finally, if the largest number in S is f(0) = f(1), then the same argument
works with k chosen so that f(k/n) is the minimum number in S. And
note that if f(0) is both the largest and smallest number in S, then they
are all the same and f(0) = f(1/n).

2. Given any two triangles in the plane, show that there is one line that
bisects both of them.

Solution. Call the triangles T1 and T2. Let C be the point which is the
center of mass of T1. For θ ∈ [0, 2π], let `θ be the oriented line through C
whose positive direction makes an angle θ with the horizontal (a picture
here would really help). Every `θ bisects the first triangle.

Now let f(θ) be the portion of area of the second triangle which lies
to the left of the oriented line `θ. The function f is continuous, and
satisfies f(θ)+f(θ+π) = Area(T2). In particular, f(0)+f(π) = Area(T2).
If f(0) = Area(T2)/2, we are done, and `0 bisects both triangles. If
f(0) < Area(T2)/2 then f(π) > Area(T2)/2 and by the intermediate value
theorem, there is a θ with f(θ) = Area(T2)/2, so that `θ bisects both
triangles. Finally, the case f(0) > Area(T2)/2 has f(π) < Area(T2)/2 and
again by the IVT we get a line bisecting both triangles.

3. A hiker begins a backpacking trip at 6am on Saturday morning, arriving
at camp at 6pm that evening. The next day, the hiker returns on the same
trail leaving at 6am in the morning and finishing at 6pm. Show that there
is some place on the trail that the hiker visited at the same time of day
both coming and going.

Solution. Let u(t) be the hiker’s distance from the trailhead on the uphill
trip as a function of time, and d(t) be the hiker’s distance from the trail-
head on the downhill trip as a function of time. Let f(t) = d(t) − u(t).
Now f(6am) > 0 and f(6pm) < 0, so by the IVT there is a time c with
f(c) = 0, which means d(c) = u(c), so the hiker ais at the same location
on the trail on both trips at time c.

4. Let a, b, and c be real numbers. Show that the equation

4ax3 + 3bx2 + 2cx = a+ b+ c

always has a root between 0 and 1.



Solution. Let f(x) = ax4 +bx3 +cx2. Then f(0) = 0 and f(1) = a+b+c.
By the mean value theorem, there is an x0 between 0 and 1 with f ′(x0) =
a+ b+ c, so 4ax30 + 3bx20 + 2cx0 = a+ b+ c as desired.

5. Prove that x3 − 3x + c has at most one root in [0, 1], no matter what c
may be.

Solution. Let f(x) = x3 − 3x+ c. If f(x) has roots a and b on [0, 1] then
by Rolle’s Theorem, there is c ∈ (a, b) with f ′(c) = 0. But f ′(x) = 3x2−3
is not zero for any c ∈ (0, 1), a contradiction, so f has at most one root in
[0, 1].

6. For n any positive integer and x, y real numbers, find all solutions to
(xn + yn) = (x+ y)n.

Solution. The only solutions are y = 0 or x = 0 or, when n is odd,
x = −y. Fix y, and let f(x) = xn + yn − (x + y)n. Compute f ′(x) =
n(xn−1 − (x + y)n−1). If f ′(x) = 0 then xn−1 = (x + y)n−1 and taking
n− 1-th roots gives the solution x = x+ y, which works for any x as long
as y = 0. When n is odd, there is the additional solution −x = x + y or
x = −y/2.

Suppose n is even. We have f(0) = 0, and if there is any other x0 with
f(x0) = 0, then by Rolle’s theorem, there is some c between 0 and x0 with
f ′(c) = 0, which can only happen when y = 0. We have shown the only
solutions are y = 0 or x = 0 for n even.

Suppose n is odd. We have f(0) = 0 and f(−y) = 0. If there is a third
solution x0 with f(x0) = 0 then by Rolle’s theorem, there are two distinct
solutions for f ′(x) = 0, which can only happen when y = 0. We have
shown the only solutions are x = 0, x = −y, or y = 0 for n odd.

7. Prove that for 0 ≤ a < b < π/2,

b− a
cos2(a)

< tan b− tan a <
b− a

cos2(b)
.

8. Suppose at time t = 0, a particle is at rest. At time t = 1, the particle is
at rest 1 unit from its starting position. Prove that at some moment the
particle’s accelleration was 4.

9. For which real numbers k does there exist a continuous real valued function
f satisfying f(f(x)) = kx9 for all real x?

Solution. A solution exists if and only if k ≥ 0. If k ≥ 0, let f(x) = k1/4x3.
Then f(f(x)) = kx9 as desired. Now suppose k < 0, and suppose there
exists f with f(x) = kx9 for all x.



First, claim f(0) = 0. We have f(f(0)) = k09 = 0, so

f(0) = f(f(f(0))) = k(f(0))9.

Then f(0) = 0 or 1 = k(f(0))8, but the latter is impossible for negative
k, so f(0) = 0.

Next, we produce a c 6= 0 with f(c) = 0. Consider f(1), which may be
zero, positive, or negative.

• If f(1) = 0, let c = 1.

• If f(1) > 0, then let a = 1 and b = f(1). Then f(a) = f(1) > 0 and
f(b) = f(f(1)) = k < 0, so by the IVT there is a c between a and b
with f(c) = 0. c 6= 0 since a and b are both positive.

• If f(1) < 0, then let a = f(1) < 0 and b = f(f(1)) = k < 0. Then
f(a) = f(f(1)) = k < 0, and f(b) = f(f(a)) = ka9 > 0, so by the
IVT, there is c between a and b with f(c) = 0. c 6= 0 since a and b
are both negative.

Finally, we have a contradiction, since kc9 = f(f(c)) = f(0) = 0 implies
c = 0. This shows f cannot exist for k < 0.

10. Let f(x) be differentiable on [0, 1] with f(0) = 0 and f(1) = 1. For each
positive integer n, show that there exist distinct points x1, x2, . . . , xn in
[0, 1] such that

n∑
i=1

1

f ′(xi)
= n.

11. (MCMC 2004 II.1) Suppose f is a continuous real-valued function on the
interval [0, 1]. Show that ∫ 1

0

x2f(x) dx =
1

3
f(ξ)

for some ξ ∈ [0, 1].

Solution. Because f is continuous, it attains its minimum and maximum
at points a and b, both in [0, 1], giving

f(a)

∫ 1

0

x2dx ≤
∫ 1

0

x2f(x) dx ≤ f(b)

∫ 1

0

x2 dx

or

f(a) ≤ 3

∫ 1

0

x2f(x) dx ≤ f(b).

Thus, the Intermediate Value Theorem guarantees a point ξ ∈ [0, 1] such
that

f(ξ) = 3

∫ 1

0

x2f(x) dx.



(From Problem 1.5.2, Berkeley Problems in Mathematics, Springer, 1998)


