
The Greatest Integer function.

Definition. For a real number x, denote by bxc the largest integer less than or
equal to x.

A couple of trivial facts about bxc:

• bxc is the unique integer satisfying x− 1 < bxc ≤ x.

• bxc = x if and only if x is an integer.

• Any real number x can be written as x = bxc+ θ, where 0 ≤ θ < 1.

Some basic properties, with proofs left to the reader:

Proposition 1. For x a real number and n and integer:

1. bx+ nc = bxc+ n.

2. b−xc =

{
−bxc if x = bxc,
−bxc − 1 if x 6= bxc.

3. bx/nc = bbxc /nc if n ≥ 1.

4. b2xc = bxc+
⌊
x+ 1

2

⌋
. More generally,

bnxc =

n−1∑
k=0

⌊
x+

k

n

⌋
.

The Legendre formula gives the factorization of n! into primes:

Theorem 1 (Legendre Formula). For n a positive integer,

n! =
∏

pprime,p≤n

pα(p)

where

α(p) =

∞∑
k=1

⌊
n

pk

⌋
.

Note that the sum for α(p) is finite, and that α(p) is the highest power of p that
divides n!.

Proof. Among the first n positive integers, those divisible by p are p, 2p, . . . , tp,
where t is the largest integer such that tp ≤ n; in other words, t is the largest
integer less than or equal to n/p, so t = bn/pc. Thus there are exactly bn/pc
multiples of p occurring in the product that defines n!, and they are

p, 2p, 3p, . . . ,

⌊
n

p

⌋
p.



With the same reasoning, the numbers between 1 and n which are divisible by
p2 are

p2, 2p2, . . . ,

⌊
n

p2

⌋
p2

and there are
⌊
n/p2

⌋
of these. Generally,

⌊
n/pk

⌋
are divisible by pk and so the

total number of times p divides n! is

α(p) =

∞∑
k=1

⌊
n

pk

⌋
.

All of this material can be found in a good book on number theory, for
example Burton, Elementary Number Theory. A deeper treatment is in Apostol,
Introduction to Analytic Number Theory.

Exercises

1. Prove the statements in Proposition 1.

2. If 0 < y < 1, what are the possible values of bxc − bx− yc?

Solution. Always 1 is possible, and also 0 unless x is an integer.

3. Let {x} = x− bxc denote the fractional part of x. What are the possible
values of {x}+ {−x}?

Solution. 0 if x is an integer, 1 otherwise.

4. Prove that b2xc − 2 bxc is either 0 or 1.

5. Prove that b2xc+ b2yc ≥ bxc+ byc+ bx+ yc.

6. For an integer n ≥ 0, prove that bn/2c − b−n/2c = n.

7. For an integer n ≥ 1, the number of digits (in base ten) of n is 1 +
blog10(n)c.

Problems

1. How many zeros does the number 1000! end with?



Solution. One must find out how many factors of 10 are in 1000!. There
will be more factors of 2 than 5, so compute the number of factors of five:⌊

1000

5

⌋
+

⌊
1000

25

⌋
+

⌊
1000

125

⌋
+

⌊
1000

625

⌋
= 200 + 40 + 8 + 1 = 249.

There are 249 zeros at the end of 1000!.

2. If n is a positive integer, prove that
⌊√

n+
√
n+ 1

⌋
=
⌊√

4n+ 2
⌋
.

Solution. First, (
√
n+
√
n+ 1)2 = 2n+2

√
n2 + n+1. Now, n2 < n2+n <

(n+ 1/2)2 so that n <
√
n2 + n < n+ 1/2. Then,

√
4n+ 1 <

√
n+
√
n+ 1 <

√
4n+ 2.

Squares are always odd or divisible by 4, so 4n+2 is never a square. Then⌊√
4n+ 1

⌋
=
⌊√

4n+ 2
⌋

and so
⌊√

n+
√
n+ 1

⌋
=
⌊√

4n+ 2
⌋
.

3. Determine all positive integers n such that b
√
nc divides n.

Solution. When n = k2, n = k(k+ 1), or n = k(k+ 2) = (k+ 1)2 − 1.

4. If n is a positive integer, prove that⌊
8n+ 13

25

⌋
−

⌊
n− 12−

⌊
n−17
25

⌋
3

⌋

is independent of n.

Solution. Bring the first term inside, get a common denominator. Check
that it’s periodic mod 25, then check for n = 0, . . . , 24.

5. Prove that
n∑
k=1

⌊
k

2

⌋
=

⌊
n2

4

⌋
.

Solution. Easy to do in two cases, n even or n odd, using 1 + · · · + m =
m(m+1)

2 .

6. A sequence of real numbers is defined by the nonlinear first order recur-
rence

un+1 = un(u2n − 3).

(a) If u0 = 5/2, give a simple formula for un.
(b) If u0 = 4, how many digits (in base ten) does bu10c have?



Solution. Prove by induction that if u0 = d2+1
d then un = d2·3

n
+1

d3n
. In par-

ticular, for u0 = 5/2, un = 43
n
+1

23n
. For part (b), there are

⌊
310 log10(2 +

√
3)
⌋
+

1 digits. (MIT 18.S34 F’07).

7. Which positive integers can be written in the form n + b
√
n+ 1/2c for

some positive integer n?

Solution. Looks like all but the squares. Haven’t proved it yet. (MIT
18.S34 F’07).

8. Prove that the sequence
{⌊

(
√

2)n
⌋}∞
n=0

contains infinitely many odd num-
bers.

Solution. (
√

2)n is even (a power of 2) when n is even. When n = 2k+1 is
odd, (

√
2)n = 2k

√
2. Now

⌊
2k
√

2
⌋

is odd exactly when the kth binary digit

of
√

2 is 1. Since
√

2 is irrational, its binary expansion must have infinitely
many 1’s. (Original, inspired by the Graham-Pollak sequence).

9. Determine whether the improper integral∫ ∞
0

(−1)bx
2cdx

converges or diverges, where b·c is the greatest integer function.

Solution. It converges. For
√
n ≤ x <

√
n+ 1, we have bx2c = n, so that∫ ∞

0

(−1)bx
2cdx =

∞∑
n=0

(−1)n(
√
n+ 1−

√
n).

Since the series is alternating and its terms approach zero, it converges.
Source: Youngstown State Calculus Competition, 2005.

10. Let {x} denote the distance between the real number x and the nearest
integer. For each positive integer n, evaluate

Fn =

6n−1∑
m=1

min
({m

6n

}
,
{m

3n

})
.

(Here min(a, b) denotes the minimum of a and b.)

Solution. Putnam 1997 B1

11. Let a, b, c, d be real numbers such that bnac + bnbc = bncc + bndc for all
positive integers n. Prove that at least one of a + b, a − c, a − d is an
integer.



Solution. (MIT 18.S34 F’07)

12. Define a sequence a1 < a2 < · · · of positive integers as follows. Pick
a1 = 1. Once a1, . . . , an have been chosen, let an+1 be the least positive
integer not already chosen and not of the form ai + i for 1 ≤ i ≤ n. Thus
a1 + 1 = 2 is not allowed, so a2 = 3. Now a2 + 2 = 5 is not allowed, so
a3 = 4. Then a3 + 3 = 7 is not allowed, so a4 = 6, etc. The sequence
begins:

1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, . . .

Find a simple formula for an. Your formula should enable you, for in-
stance, to compute a1000000.

Solution. (MIT 18.S34 F’07)

13. For a positive real number α, define

S(α) = {bnαc : n = 1, 2, 3, . . . } .

Prove that {1, 2, 3, . . . } cannot be expressed as the disjoint union of three
sets S(α), S(β), and S(γ).

Solution. Very hard! (Putnam 1995 B6)


