
The Fundamental Theorem of Calculus.

The two main concepts of calculus are integration and differentiation. The
Fundamental Theorem of Calculus (FTC) says that these two concepts are es-
sentially inverse to one another.

The fundamental theorem states that if F has a continuous derivative on an
interval [a, b], then ∫ b

a

F ′(t)dt = F (b)− F (a).

This form allows one to compute integrals by finding anti-derivatives.
The FTC says that integration undoes differentiation (up to a constant which

is irrevocably lost when taking derivatives), in the sense that

F (x) =

∫ x

a

d

dt
(F (t))dt+ C

where C = F (a).
The second part of the fundamental theorem says that differentiation undoes

integration, in the sense that

f(x) =
d

dx

∫ x

a

f(t)dt,

where f is a continuous function on an open interval containing a and x.

Problems

1. Let f(x) = 1
1+x4 + a, and let F be an antiderivative of f , so that F ′ = f .

Find a so that F has exactly one critical point.

Solution. a = −1. Clemson Calculus Competition.

2. Let

f(x) =

∫ 2

x

1√
1 + t3

dt.

Find ∫ 2

0

xf(x)dx.

Solution. Integrate by parts to get∫ 2

0

xf(x)dx = −
∫ 2

0

1

2
x2f ′(x)dx =

∫ 2

0

x2

2
√

1 + x3
dx.

The rest is a straightforward integral after substituting for x3. The solu-
tion is 2

3 .



3. What function is defined by the equation

f(x) =

∫ x

0

f(t)dt+ 1?

Solution. Larson 6.9.7

4. Let f be such that

x sin(πx) =

∫ x2

0

f(t)dt.

Find f(4).

Solution. Put F (x) =
∫ x

0
f(t)dt. Then F (x2) = x sin(πx). Take the

derivative of both sides to get 2xf(x) = sin(πx) + πx cos(πx) and plug
in x = 2 to find f(4) = π/2. Kenneth Roblee, Troy U.

5. If a, b, c, d are polynomials, show that∫ x

1

a(x)c(x)dx

∫ x

1

b(x)d(x)dx−
∫ x

1

a(x)d(x)dx

∫ x

1

b(x)c(x)dx

is divisible by (x− 1)4.

Solution. Denote the expression in question by F (x). F is a polynomial.
We know (x − 1)4 divides F if and only if F ′′′(1) = 0. Check this by
differentiation. (Larson 6.9.3).

6. Suppose that f is differentiable, and that f ′(x) is strictly increasing for
x ≥ 0. If f(0) = 0, prove that f(x)/x is strictly increasing for x > 0.

Solution. Larson 6.9.12

7. (MCMC 2005 II.5) Suppose that f : [0,∞) → [0,∞) is a differentiable
function with the property that the area under the curve y = f(x) from
x = a to x = b is equal to the arclength of the curve y = f(x) from x = a
to x = b. Given that f(0) = 5/4, and that f(x) has a minimum value on
the interval (0,∞), find that minimum value.

Solution. The area under the curve y = f(x) from x = a to x = b is∫ b

a

f(t) dt,

and the arclength of the curve y = f(x) from x = a to x = b is∫ b

a

√
1 + (f ′(t))2 dt.



Therefore, ∫ b

a

f(t) dt =

∫ b

a

√
1 + (f ′(t))2 dt

for all nonnegative a and b. In particular, we can write∫ x

0

f(t) dt =

∫ x

0

√
1 + (f ′(t))2 dt

for all nonnegative x. Both sides of the above equation define a function
of x, and since they are equal, their derivatives are equal; their derivatives
are given by the Second Fundamental Theorem of Calculus:

d

dx

(∫ x

0

f(t) dt

)
=

d

dx

(∫ x

0

√
1 + (f ′(t))2 dt

)
,

i.e.,
f(x) =

√
1 + (f ′(x))2.

So, we are looking for a function y which satisifies the differential equation

y =
√

1 + (y′)2.

This equation is separable:

y =
√

1 + (y′)2 ⇒ y2 = 1 + (y′)2 (1)

⇒ (y′)2 = y2 − 1 (2)

⇒ y′ =
√
y2 − 1 (3)

⇒ dy√
y2 − 1

= dx. (4)

Integrating both sides yields∫
dy√
y2 − 1

=

∫
dx⇒ ln

∣∣∣∣y +
√
y2 − 1

∣∣∣∣ = x+ C

(where the first integral is evaluated using the trig substitution y = sec θ
and the two arbitrary constants of integration are combined into one con-
stant on the right hand side). Next, since f(0) = 5/4 is positive, we can
drop the absolute value, and solve for y:

ln
(
y +

√
y2 − 1

)
= x+ C ⇒ y +

√
y2 − 1 = ex+C = Aex (where A = eC)

⇒
√
y2 − 1 = Aex − y

(5)

⇒ y2 − 1 = (Aex − y)2 = A2e2x − 2Ayex + y2(6)

⇒ −1 = A2e2x − 2Ayex

(7)

⇒ 2Ayex = A2e2x + 1 (8)

⇒ y =
A2e2x + 1

2Aex
=
A

2
ex +

1

2A
e−x. (9)



Using f(0) = 5/4, we find

5

4
=
A

2
+

1

2A
⇒ A =

1

2
or 2.

This gives two possible functions:

y =
1

4
ex + e−x or y = ex +

1

4
e−x.

This latter has a minimum at x = − ln 2, which is not positive, so we
reject that function. The former has a minimum at x = ln 2, and the y
value is 1. Note: One could also deduce from the differential equation

y′ =
√
y2 − 1 that at the minimum value, since y′ = 0, the y-value must

be 1.

8. (MCMC 2006 I.5) Let f(t) and f ′(t) be differentiable on [a, x] and for each
x suppose there is a number cx such that a < cx < x and∫ x

a

f(t) dt = f(cx)(x− a).

Assume that f ′(a) 6= 0. Then prove that

lim
x→a

cx − a
x− a

=
1

2
.

Solution. Let

F (x) =

∫ x

a

f(t) dt.

Using Taylor’s expansion of F (x), we have

F (x) = F (a) + (x− a)F ′(a) +
(x− a)2

2
F ′′(θx),

where θx lies strictly between a and x, and as x goes to a, θx also goes to
a. We also have F (a) = 0, F ′(x) = f(x), and F ′′(x) = f ′(x). Thus,

F (x) = 0 + (x− a)f(a) +
(x− a)2

2
f ′(θx).

By definition,

f(cx) =
1

x− a
F (x) = f(a) +

x− a
2

f ′(θx).

Therefore,
f(cx)− f(a)

x− a
=

1

2
f ′(θx).



On the other hand we can write

f(cx)− f(a)

x− a

as a product
f(cx)− f(a)

cx − a
· cx − a
x− a

.

On taking the limits of these as x goes to a, we get

lim
x→a

1

2
f ′(θx) = lim

x→a

f(cx)− f(a)

cx − a
· cx − a
x− a

.

This gives
1

2
f ′(a) = lim

x→a

f(cx)− f(a)

cx − a
lim
x→a

cx − a
x− a

.

In other words,
1

2
f ′(a) = f ′(a) · lim

x→a

cx − a
x− a

.

This shows

lim
x→a

cx − a
x− a

=
1

2
.


