The Fundamental Theorem of Calculus.

The two main concepts of calculus are integration and differentiation. The
Fundamental Theorem of Calculus (FTC) says that these two concepts are es-
sentially inverse to one another.

The fundamental theorem states that if F' has a continuous derivative on an
interval [a, b], then

/b F/(t)dt = F(b) — F(a).

This form allows one to compute integrals by finding anti-derivatives.
The FTC says that integration undoes differentiation (up to a constant which
is irrevocably lost when taking derivatives), in the sense that

F(z) = /x %(F(t))dt +C

where C' = F(a).

The second part of the fundamental theorem says that differentiation undoes
integration, in the sense that

f@) =2 [ st

where f is a continuous function on an open interval containing a and z.

Problems

1. Let f(z) = ﬁ + a, and let F be an antiderivative of f, so that F’' = f.
Find a so that F' has exactly one critical point.

Solution. a = —1. Clemson Calculus Competition. O

2. Let

S |
f(x):/r g
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Find

Solution. Integrate by parts to get

2 - 21 ) a2
/Oacf(x)dx— /0 2:Uf(ac)dx—/0 72\/14-7&636&.

The rest is a straightforward integral after substituting for 3. The solu-

tion is % O



3. What function is defined by the equation
x
@) = / F(t)dt+17
0

Solution. Larson 6.9.7 O

4. Let f be such that .
xsin(rx) = /OI f@)de.
Find f(4).
Solution. Put F(x) = fox f(t)dt. Then F(2?) = wxsin(rx). Take the
derivative of both sides to get 2z f(x) = sin(mx) + 7wx cos(wz) and plug

in z =2 to find f(4) = 7/2. Kenneth Roblee, Troy U. O

5. If a,b, ¢, d are polynomials, show that

x xT xT T
/ a(x)c(m)dac/ b(x)d(z)dx —/ a(x)d(m)dac/ b(x)e(x)dx
1 1 1 1
is divisible by (x — 1)%.
Solution. Denote the expression in question by F(x). F is a polynomial.
We know (z — 1)* divides F if and only if F”’(1) = 0. Check this by
differentiation. (Larson 6.9.3). O

6. Suppose that f is differentiable, and that f’(z) is strictly increasing for
x > 0. If f(0) =0, prove that f(z)/x is strictly increasing for x > 0.

Solution. Larson 6.9.12 O
7. (MCMC 2005 II.5) Suppose that f: [0,00) — [0,00) is a differentiable
function with the property that the area under the curve y = f(z) from
x = a to x = b is equal to the arclength of the curve y = f(z) from z = a
to x = b. Given that f(0) = 5/4, and that f(z) has a minimum value on

the interval (0, 00), find that minimum value.

Solution. The area under the curve y = f(z) from x = a to x = b is

/a fwar

and the arclength of the curve y = f(z) fromx =a to z = b is

b
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Therefore,
b b
/f(t)dt:/ VITFO2dt

for all nonnegative a and b. In particular, we can write

/Ozf(t) dt — /Om\/1+(f’(t))2dt

for all nonnegative x. Both sides of the above equation define a function
of , and since they are equal, their derivatives are equal; their derivatives
are given by the Second Fundamental Theorem of Calculus:

d * d ¥
- tdt) = — 1 "#))2dt ),
([ rwa) = £ ([ viTGre)
ie.,
f@) = V1+(f(x))>
So, we are looking for a function y which satisifies the differential equation
y=v1+(y)>
This equation is separable:
y=V1+y)2 =y =1+(y) (1)
=)=y -1 (2)
=y =Vy*-1 (3)
dy
— - (4)
Vy—1

=dx.

Integrating both sides yields

/Ciyl/dxsslner\/le'erC
=1

(where the first integral is evaluated using the trig substitution y = sec
and the two arbitrary constants of integration are combined into one con-
stant on the right hand side). Next, since f(0) = 5/4 is positive, we can
drop the absolute value, and solve for y:

In(y + /y2_1):x+C:>y+\/y2—1:eI+C:AeI (where A = e%)
=V 1= 4" —y

(5)
:>y2—1:(Aew—y)2:A262I—2Ayew+g(%)
= —1 = A%e% — 24ye”

= 2Aye” = A%e** +1 (8)
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Using f(0) = 5/4, we find

This gives two possible functions:

1
=-e"4+e " or y=e"+ e ",
=gt y=ety
This latter has a minimum at * = —In2, which is not positive, so we
reject that function. The former has a minimum at x = In2, and the y

value is 1. Note: One could also deduce from the differential equation

y' = v/y? — 1 that at the minimum value, since 3y’ = 0, the y-value must
be 1. O

. (MCMC 2006 1.5) Let f(t) and f'(¢) be differentiable on [a, z] and for each
x suppose there is a number ¢, such that a < ¢, < x and

[ s0dt = e -a)

Assume that f’(a) # 0. Then prove that

. Cx—a 1
lim = —,
T—a T —a 2

Solution. Let

F(z) = / £(¢) dt.

Using Taylor’s expansion of F'(x), we have

P(x) = Fla) + (e~ )P (a) + 5 P,

where 6, lies strictly between a and z, and as = goes to a, 8, also goes to
a. We also have F(a) =0, F'(x) = f(z), and F"(z) = f'(x). Thus,

Fe) =0+ (@~ a)f(e) + o o),
By definition,
fler) = ——F(@) = fla) + =2 (6.)
Therefore,
f(cm) - f((l) _ f/(ax)



On the other hand we can write
flez) = fla)
T —a

as a product
fles) ~ f(a) e —a

Cy — @ T—a

On taking the limits of these as x goes to a, we get

lim 1f’({)m) = lim flez) = fla) @ —a

T—a T—a Ce —Q T —a ’
This gives
*f/(a) — lim f(cz) — f(a’) lim Cx —aQ
T—a Ce —Q r—a T — a
In other words,
1oy p i Sz =@
Sf'(@) = f'(a) - lim 2=

This shows




