336
11.

Other Approaches to the Elementary Functions

(On the complexity of Euler’s constant) FEuler’s constant or the
Euler—Mascheroni constant v is defined by

v = lim [1+1+1+---+l—lo m]—05772156
Lim 513 " log =0. 649. . ..

(10.2.20)
It is related to the gamma function by the formula

L1 (e )]

n=1

(10.2.21)
a) Use the recursion
T(z+1)=2zI(2)
to prove that if T’ has an expansion of form (10.2.21), then v is
given by (10.2.20).
b) The exponential integral E,| is defined by

e ' dt
—

(10.2.22)

B o=,

Show that

(10.2.23) —E,(x)=y +logx+ >, ( x>0.
k=1

—x)k
k- k!
c¢) Use (10.2.23) to construct an

05 ((log n)*M(n))

algori.thm for y by choosing x roughly of size 6n.

This method, suggested by Sweeney [63], is a reasonably efficient
method for computing y. Brent and McMillan [80] present a
number of algorithms for this computation. They calculate over
29,000 partial quotients of the continued fraction for y. As a

consequenc? they show that if vy is rational the denominator of y
exceeds 10>

Chapter Eleven

Pi

Abstract. The first section of the chapter deals with the history of the
calculation of w and related matters, while the second section deals with its
transcendence. The third section looks at irrationality measures and includes a
proof of the irrationality of {(3). This chapter is largely self-contained and
indeed contains considerable related number theory, especially in the exer-
cises.

11.1 ON THE HISTORY OF THE CALCULATION OF s

The history of 7 presumably begins with man’s first attempts at estimating
the perimeter or area of a circle of given radius and as such starts at the
dawn of recorded history. The Egyptian Rhind (or Ahmes) Papyrus which
dates from approximately 2000 B.c., gives a value of (16/ 9)* = 3.1604. . . for
. Various other early Babylonian and Egyptian estimates include 3, 3%,
and 3%. Implicit in the Bible (1 Kings 7: 23) is a value 3: “And he made a
molten sea, ten cubits from the one brim to the other; it was round all
about. . . and a line of thirty cubits did compass it round about.”

Mathematical interest in 77 comes into sharp focus in the classical Greek
period. The Greeks investigated the problem of “squaring the circle.” This
question and its final resolution over two millenia later will be pursued in
the next section. Currently we wish to review the primary Western develop-
ments in the calculation of .

Archimedes of Syracuse (287-212 B.C.) provided the first major landmark
in the quest for digits of 7. By considering inscribed and circumscribed
polygons of 96 sides, Archimedes gave the estimate

10 1
3;ﬂ<’77<37.
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A salient feature of Archimedes’ method is that it can, in principle, be used
to provide any number of digits of .

If a, denotes the length of a circumscribed regular 6-2"-gon and b,
denotes the length of an inscribed regular 6-2"-gon about a circle of rad1us
1/2, then

(11.1.1) a,,, = z

(11.1.2) b,.,=Va,.b,.

This two-term iteration, starting with a,:=2V3 and b, :=3, can be used to
calculate 7. (See also Section 8.4.) The fourth iteration yields a, = 3.1427. . .
and b, =3.1410. . . and corresponds to estimating 7 using polygons with 96
sides.

If we observe that

an+1b (
@17 b,.1)(a, +b,) @0

(11]“3) an+1 - bn+1

we again see that the error is decreased by a factor of approximately 4 with
each iteration. Variations of this modern formulation of Archimedes’
method provided the basis for virtually all extended precision calculations of
m for the next 1800 years, culminating with Ludolph van Ceulen (1540-
1610) who correctly computed 34 digits. The limitations of this method stem
from the relatively slow convergence and from the need to extract square
roots. (See Exercise 1.)
Frangois Vieta (1540-1603) gave the first infinite expansion

2 1 1 1 1 1 1 1 1 1
nie  2-11 \[J 11 TN
( ) T 2 2+2 2 2+2 2+2 2

which he derived by considering a limit of areas of inscribed 2"-gons. (See
Exercise 2.) John Wallis (1616-1703) through a complicated calculation
demanding prodigious numerical insight derived the infinite product ex-
pansion

(11.1.5)

wm

_2:2-4-4-6-6-8-8-
1 3 7-7-9-
This appears in his Arithmetica Infinitorum-of 1655. A few years later Lord

Brouncker (1620-1684), the first president of the Royal Society, recast this
as the continued fraction.
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4
71' —
1+ 1 9

(1116) 24— 15 wissine
J

2+ ———

>t 49

24 .- °

The Scottish mathematician James Gregory (1638-1675) in 1671 provided
the underlying method for the next era in the history of the calculation of .
He showed that

(11.1.7) arctanx—J'xi 3
o 0 1+ x>

and hence, on setting x := 1, that

T 1. 1 1
(11.1.8) Z-—l—g'l"s'—;'i'"'
a formula independently discovered in 1674 by Leibniz (1646-1716). By the
beginning of the eighteenth century Abraham Sharp under the direction of
the English astronomer and mathematician E. Halley had obtained 71
correct digits of 7 using Gregory’s series (11.1.7) with x :=V1/3, namely,

T 1 1 1 1
11.1.9 —=—(1——+ ———+-~>.
( ) 6 V3 3-3 3.5 3.7
It is the techniques of calculus that so expanded the scope for calculating,
and it is perhaps not surprising that Isaac Newton (1642-1727) himself
calculated 7 to 15 digits sometime in 1665-66. He used the series

3V3 ( 1 1 1 1 )
=" 424 — — — ..
(11.1.10) == ) 2 52 32 73.7°

which is essentially an arcsin expansion. (See Exercise 4.) Newton was later
to write: “I am ashamed to tell you to how many figures I carried these
computations, having no other business at the time.” John Machin (1680-
1752) derived the formula which bears his name:

ks

4

s (3) ().
—4arctan< 5 arctan 239

(11.1.11)
Coupled with Gregory’s series for arctan this provides a very attractive
method for calculating 7 since the first term is well suited to decimal
arithmetic and the second term converges very rapidly. Machin calculated
100 digits this way in 1706. In the same year William Jones published his A
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New Introduction to the Mathematics, where he denoted the ratio of the
circumference to the diameter by the Greek letter =, presumably for the
first letter of periphery. It was, however, Leonard Euler (1707-1783) who
popularized the use of the symbol. Euler derived numerous series and
products for 7 and 7°. Among the best-known are

2

(11.1.12) -3 lz
6 n=1 R

and

(11.1.13) 2 1

90 int

The explicit summation of (11.1.12) had eluded Liebniz and also the
Bernoulli brothers, Jacques and Jean. The method by which Euler derived
his evaluations of £7_, 1/n** is outlined in Exercise 7. This is to be found in
Euler’s Introducio in Analysin Infinitorum of 1748. The Machin-like formula

1 3
11.1.14 = (—) < )
( ) 7 =20 arctan 7 + 8 arctan 7

coupled with the expansion

2 2-
11.1.15 =X< e )

( ) arctan x = = 1 3y+3.5y+
where y := x%/(1 + x°), allowed Euler to compute 20 digits of 7 in under an
hour.

The next 200 years saw little change in the methods employed to calculate
7. In 1844 Johann Dase (1824-1861), a calculating prodogy, used the
formula

T 1 1 1
10§ = artan 5+ arctan (5) + arean (g
(11.1.16) g —arctan { 5 ) +arctan | 5 | + arctan 3

to produce 205 digits of 7. (Dase’s arithmetical abilities were awesome—he
could multiply 100-digit numbers together in his head, a feat which took him
roughly 8 hours.)

The zenith (or nadir depending on your perspective) in premachine
calculations was achieved by William Shanks (1812-1882), who published
607 purported digits of 7, of which 527 were correct. Later Shanks pub-
lished an extension to 707 digits. This was also incorrect after the 527th
digit. These calculations took Shanks years and were performed in an
entirely straightforward fashion using no tricks or shortcuts. (See W. Shanks
[1853].) The mistakes went unnoticed until 1945, when D. F. Ferguson, in
one of the final hand calculations, produced 530 digits. Ferguson produced
808 digits in 1947, using a desk calculator and the formula
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7 =arctan () - arctan 35) + retan 55
(11.1.17) 4—3arctan<4 +arctan | 55 | + arctan \ Too= | -

Thus dawns the computer age. In June 1949 ENIAC (Electronic Numeri-
cal Integrator and Computer) was used to evaluate 2037 digits of 7 using
Machin’s formula and 70 hours elapsed time. An analysis of the distribution
of the digits was carried out by Metropolis, Reitwiesner, and von Neumann.
By 1958, Genuys had computed 10,000 digits on an IBM 704 in 100 minutes,
once again using Machin’s formula. Felton had performed a 10,000-digit
calculation in 1957; however, due to machine error it was only correct to
7480 digits. In 1961 D. Shanks and Wrench [62] used the identity

1 ) ( 1
+ 4 arctan

~24arctan (5 )
(11.1.18) & =24 arctan <§) + 8 arctan 57 739

and under 9 hours on an IBM 7090 to produce 100,000 digits of 7. This was
checked using the formula

517) 20 arctan (239)

The million-digit mark was set by Guilloud and Bouyer in 1973 on a CDC
7600. The calculation, which took just under a day, used (11.1.19) with
(11.1.18) as a check. '

Kanada, Tamura, Yoshino, and Ushiro [Pr] calculated in excess of 16
million digits using an AGM based algorithm, Algorithm 2.2, and checked
10 million digits using (11.1.19). The 16 million-digit calculation took under
30 hours on a HITAC M-280H and used an FFT-based fast multiplication.

At the end of 1985 the record belonged to W. Gosper. He calculated 17
million terms of the continued fraction expansion for 7 and so in excess of
this number of decimal digits—after a radix conversion from a binary
computation. His method is based on a very careful evaluation of Ramanu-
jan’s series (5.5.23) on a Symbolics 3670. (A remarkable feat considering
the size of the machine.) As is surprisingly often the case with these large
scale calculations, Gosper uncovered subtle design flaws which had not
surfaced in smaller calculations.

In January 1986, D. H. Bailey [Pr] computed 29,360,000 decimal digits of
7 on the CRAY-2 at the NASA Ames Research Center. This calculation
used only 12 steps of the quartic algorlthm (5.4.7) with r:= 4. This results
in computing «(2°°), which agrees with 7' to more than 45 million places.
The calculation took less than 28 hours and was verified with a 40-hour
computation of 25 steps of Algorithm 2.1. It is amusing to observe that the
quartic calculation requires well under 100 full precision multiplications,
divisions, and root extractions.

In July 1986, Kanada reclaimed the record with a computation of 2%
decimal digits. He again used Algorithm 2.2, verified in September using
(5.4.7) with r:= 4, but reduced the elapsed time to 5 hours and 56 minutes
on a S-810/20 super computer. This represented a speed-up by a factor of

(11.1.19) = =48 arctan < 18) + 32 arctan (
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15. His previous computation now used only 96 minutes of CPU time. Plans
were to compute 2°7 decimal digits (over 100 million) at the end of 1987.

Nor is the end in sight. It will probably be the case than hundreds or
thousands of millions of digits will be calculated by the end of the century.
(This is now more a matter of will than anything else.) Apart from
observations like “the sequence 314159 appears in the digits of # commenc-
ing at digit 9,973,760, there is little we care to say about the digits. They
have, however, been subjected to considerable scrutiny. It is an open
question as to whether 7 is normal. That is, do all sequences of integers
appear with the same frequency in the digits (are one-tenth of the digits 7,
one-hundredth of the consecutive digit pairs 23, etc.)? On the basis of the
first 30 million digits the answer appears positive. This, of course, is no great
help in deciding the normality issue. (See Wagon [85].)

In terms of utility, even far-fetched applications such as measuring the
circumference of the universe require no more digits than Ludolph van
Ceulen had available—but then utility has had little to do with this particu-
lar story.

Comments and Exercises

This section presents only the highlights of the quest for digits. The matter
may be pursued in detail in Beckmann [77], a most useful though rather
individualistic history, and in Le Petit Archiméde [80]. Schepler’s chronog-
raphy [50] and Wrench’s history [60] are also of interest. Details of the more
recent calculations may be found in Tamura and Kanada [Pr], where a
compendium of Machin-like identities is provided.

There is also a considerable collection of mr-related trivia. For example,
the Indiana House of Representatives attempted to legislate the value of 7
in Bill 246 of 1897. The bill, which appears to proclaim 7 to be several
different incredibly inaccurate values, including 4 and 64/25 (see Beckmann
[77], and Singmaster [85]), passed the House and only floundered in the
Senate on the apparently chance intercession of C. A. Waldo, a professor at
Purdue. Keith [86] gives a 402 digit mnemonic for .

1. a) Show that the algorithm of (11.1.1) and (11.1.2) calculates 7 by
showing that g, and b, are as advertised.

b) Prove (11.1.3) and estimate how many iterations of (11.1.1) and
(11.1.2) are required to calculate 35 digits of 7. This should be
compared to Bailey’s [Pr] calculation which uses the same opera-
tions.

2. a) Prove, from the product expansions for sin and cos, that

sin 0
11.1.20) 6=
( ) cos (6/2) cos (8/2%) cos (6/2°) - - - o] <.

b) Alternatively deduce (11.1.20) in an elementary fashion by setting

b)
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rimens(3) o (7)o (31
ni=cos |3 )cos| > >

and showing that
I = sin 0
* " 2"sin(6/27) "

Set 6:=m/2 and use the formula cos(6/2)=V3+ 3cos@ to
deduce Viéta’s formula (11.1.4)

2_\F\ﬁ+1ﬁ\/1+1\/1+1\ﬁ...
7 V2V272V2 V2" 2 VN2"2 V2

Prove Wallis’s formula (11.1.5) in the form

2:2:4-4-6-6-8-8
1.3-3-5-5-7-7-9

_
2

Hint: Show that

f””.z,n oo L35 (2m—l)
o SIM o Xax 2-4-6---2m 2
and

fﬂ/z sin”™*'x dx = 2:4:62m

0 1-3-5- (2m+l)

Establish the corresponding formula for e:

e 2\1/2 /0. g4\ 14 46681/8
§=<I> <ﬁ> <5577> B
Show that the volume of the 2a-dimensional unit sphere is 7"/n!

while the (2n+ 1)-dimensional unit sphere has the volume
2°**![n!/(2n + 1)!]7". Find a unified formula for these two cases.

Deduce (11.1.10) roughly as Newton did. Show that

l——- f Vx—x* dx

and that
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5. a) Deduce Machin’s formula

E=4arctan<l)— t (1)
4 5) T arctan o3

as follows. Let 6 := arctan . Then

tan26 = —22nfd _ 3
1—tan“69 12
and
120 1
tan 46 =
=139 =1* 19
Hence
(49— 7)o Tittmnde 1
4 1+ tan 46 239

b) Show that arctan satisfies the addition formula

x +
arctan x + arctan y = arctan ( 1 Y ) xy<l1.
—xy

¢) Show that

(11.1.21) arctan (l) = arctan ( 1
p pt

) + arctan (_q__)
q

p tpg+1

) = arctan (3
= arctani{ —
ptgq p/

Formula (11.1.21) was known to Euler. Bromwich [26] attributes (11.1.22)
to Charles Dodgson (Lewis Carroll).

6. (Machin-like formulae)

and that if 1+ p®> = gr,

(11.1.22)

1
arctan ( r) + arctan (

a) Show, for integral ¢, and b;, that

b,
ki = arctan <a ) + arctan <b2> + -+ + arctan <$)
al‘l

1 a,

where k is an integer if and only if
(a; + ib,)(a, + iby) -+ (a, + ib,)

has zero imaginary part.

Hint: Consider (a, + ib,)- -
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fact that

arcta —ll (
Ic nz—zl. og

-(a, + ib,) =re”, || < =, and use the

1+iz>
1—iz/"

(This gives an algorithmic check for Machin-like formulae.)
b) Show, for positive integral u, v, and & and integral m and n, that

1 1
m arctan (—) + n arctan (—) -
u v

ki
4

if and only if (1 —i)*(u+i)™(v +i)" is real.
c) Verify

7747 =4 arctan (
- rctan (
i a

% =2 arctan (
% =72 arctan (

(Machin, 1706)
(Euler, 1738)
(Hermann, 1706)

(Hutton, 1776) .

These are, in fact, all the nontrivial solutions of b). This was a
problem of Gravé’s solved by Stgrmer in 1897 The problem can
be reduced to finding integral solutions of 1+ x*=2y"or 1+ X =
, n=3, n odd. (See Ribenboim [84].) Much related material on
Machln like formulae occurs in Lehmer [38] and Todd [49].

7. Prove Brouncker’s continued fraction by showing that

Hint: If

then

+ 25
24 ..

si=a,+ta, taa,+taaa+- -

s=ay+

1_

a;
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This is a nonsimple continued fraction. The convergents satisfy
a similar recursion to that given in Exercise 2 of Section 11.3.
Apply this to

3 5 7
arctanx=x—x—+x——x—+- .
3 5 7
so that
0 -x*  -3%
a, ,a; =X, a, T’a3_ 5 >
and
X
arctan x = 5
X
1+ 2
3-x+ ox
25x°
5—3x2+—2,
7—5x"---

Now set x := 1. (According to Beckmann, Brouncker merely announced
his result—the above derivation is essentially due to Euler.)
Consider the series

3 5
X

sinx=x— 7+ 5—"".

(11.1.23) Tt

Observe that sin x =0 exactly when x = k7. Now observe that on
setting y :=x’,

(11.1.24)

exactly when y = (k)% k=1,2,3,.... If (11.1.24) were a polynomial,
we would know that the sum of the reciprocals of the roots of (11.1.23)
equals the negative of the coefficient of y and in general the sum of the
reciprocals of the powers would be expressible in terms of the coeffici-
ents and Bernoulli numbers. Thus we would deduce that

©

o 1 1 1 1
== d = —
2w ™ ZGm W

Use the product expansion for sin [Section 2.2, Exercise 1d)] to make
the above argument of Euler’s rigorous. (See also Exercise 14 of
Section 11.3.)

In computing 7 from (11.1.19) one must evaluate arctan () and
arctan (35 ). Use (11.1.15) to observe that

T
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1) < 1 2
—)=18{=c + +
arcran(m 181325 * 33257

2-4 +>
3-5(325)°

and

arctan(—l—>—57< 1 + 2 + 24 +>
57 3250 © 3(3250)°  3-5(3250)° '

Thus terms of the second series are just decimal shifts of terms of the
first series. (See Ballantine [39].) How does this affect the complexity
of calculating the two arctans?

10. Prove that the number

0.12345678910111213 - - - n(n + 1) - - -

is normal. A proof may be found in Niven [56].

11.2 ON THE TRANSCENDENCE OF =

The problem of “‘squaring the circle” is the problem of constructing a square
of the same area as a given circle of radius 1, or alternatively given a line
segment of unit length of constructing a segment of length V7. The rules of
construction allow for the use of an unmarked straightedge and an unmar-
ked compass. A more precise definition of constructible is provided in
Exercise 1. In fact, the constructible numbers are exactly those numbers
which can be obtained from the integers by a finite sequence of rational
operations and extraction of square roots. (See Exercise 1.) Thus construct-
ible numbers are algebraic and the transcendentality of = shows the
impossibility of the problem.

The Greek notion of number, based on geometric construction, made
consideration of such problems more natural than they perhaps seem today.
Indeed the problem had arisen by the fifth century B.c. Anaxagoras, who
died in 428 B.cC., had, according to Plutarch, considered it while in jail. His
contemporary, Hippocrates of Chios, the author of one of the first gecometry
texts, also considered the question. The other classical Greek problems of
“duplicating the cube” and “trisecting the angle” also arose in this period.
The “Delian problem” of duplicating the cube (in volume), so named
because the oracle of Apollo at Delos had prescribed duplicating the cubical
altar as a means of halting the plague of 428 B.C., is equivalent to
constructing V2. (The impossibility of solving these problems is also discus-
sed in Exercise 1.)

By 414 B.c. attempts at constructing 7 had become so numerous that
Aristrophanes refers to “circle squarers” in his play “The Birds.” The term
came to refer to people who attempt the impossible. However, attempting
the futile is not always a waste of time. As Boyer [68, p. 71] points out:



