1. Prove $C \subseteq A \cap B \to C \subseteq A \land C \subseteq B$.

Solution: Let $x \in C$. Since $C \subseteq A \cap B$, $x \in A \cap B$, and so $x \in A$ and $x \in B$. Since $x \in A$, $C \subseteq A$. Since $x \in B$, $C \subseteq B$. So $C \subseteq A \land C \subseteq B$.

2. Prove $A \cup B \subseteq C \rightarrow A \subseteq C \land B \subseteq C$.

Solution:

Let $x \in A$. Then $x \in A \cup B$. Since $A \cup B \subseteq C$, $x \in C$, and this shows $A \subseteq C$. Let $x \in B$. Then $x \in A \cup B$. Since $A \cup B \subseteq C$, $x \in C$, and this shows $B \subseteq C$.

3. Prove $C \subseteq A - B \to B \cap C = \emptyset$

Solution: I will prove this by contradiction. Suppose $B \cap C \neq \emptyset$. Then there is some $x \in B \cap C$. So $x \in B$, and $x \in C$. Since $C \subseteq A - B$, $x \in A - B$. This means $x \in A \land x \notin B$. So $x \notin B$. But earlier, I showed $x \in B$. This is a contradiction, so $B \cap C = \emptyset$.

4. Prove $\emptyset \subset A$.

Solution: For all $x, x \notin \emptyset$. So $x \in \emptyset$ is always false. Then $x \in \emptyset \to x \in A$ is true (vacuously). So $\emptyset \subset A$.

5. Show, for $n \in \mathbb{Z}$, that if 2|n and 3|n then 6|n.

Solution: Suppose 2|n and 3|n. Then there are $h, k \in \mathbb{Z}$ with n = 2h and n = 3k. So 2h = 3k. Since 2h is even, 3k must be even, so k must be even. Then $k = 2\ell$ for some ℓ . Then $n = 3k = 3(2\ell) = 6\ell$ and this shows 6|n.

6. Show that if x and y are rational, then x + y is rational.

Solution: Since x is rational, there are integers p and q with $x = \frac{p}{q}$. Since y is rational, there are integers r and s with $y = \frac{r}{s}$. Then $\frac{r}{r}$

$$x + y = \frac{p}{q} + \frac{r}{s} = \frac{sp + qr}{qs}$$

so x + y is rational.