
Math 642 Good Problems

1. For a one form ω ∈ T 1(M), suppose that, for all vector fields X, LXω = 0. Prove that the
coefficients ωi are constant functions in any coordinate system.

Solution: Generally, (LXω)(Y ) = X.ω(Y )−ω([X,Y ]). Let x1, . . . , xn be local coordinates
on M , and write ω =

∑
i ωidx

i. Using X = ∂
∂xi
, Y = ∂

∂xj
, we have [X,Y ] = 0 and

0 = (LXω)(Y ) = X.ω(Y ) = X.ωj =
∂ωj
∂xi

.

Since ωj has all of it’s partial derivatives equal to zero, ωj is constant.

2. Recall that M is parallelizable if the tangent bundle TM is trivial. Show that a parallelizable
manifold is orientable. Give an example to show that an orientable manifold need not be
parallelizable.

Solution: Parallelizable means TM = M ×Rn, or equivalently there are n non-vanishing
vector fields on M which form a basis for each tangent space.

The sphere S2 is orientable but TS2 is non-trivial - there is no non-vanishing vector field
on S2.

If M is parallelizable, let e1, . . . , en be a basis for Rn and let e1, . . . , en be the dual basis.
Then µ : M →

∧n TM = M ×
∧nRn by µ(p) = (p, e1 ∧ · · · ∧ en) is a non-vanishing n-form

on M , so M is oriented.

Another approach: let X1, . . . , Xn be non-vanishing vector fields on M which give a basis
for Tp(M) for all p ∈M . Let ω1, . . . , ωn ∈

∧1(M) give, at each point p, the basis of T ∗p (M)
dual to the Xi. Then µ = ω1 ∧ · · · ∧ ωn is an n-form on M , and µ is nonvanishing since
µ(X1, . . . , Xn) = 1.

3. Let φ ∈ T 2(M) be a two-tensor, and define φ∆(X) = φ(X,X). Does φ∆ define a one-form?

Solution: No, unless φ∆ ≡ 0.

Suppose φ∆ is a one-form. For any X ∈ X(M) and any C∞ function f ,

fφ∆(X) = φ∆(fX) = φ(fX, fX) = f2φ(X,X) = f2φ∆(X)

If φ∆(X) is not identically zero, then there is X so that φ∆(X) 6= 0 at some point p ∈M .
Then f(p) = f(p)2 for any smooth function f on M , including, for example f(x) ≡ 2. This
is a contradiction.

4. Let f : R2 → R be a smooth function and let M be the graph of f with the metric induced

from R3. Show that the metric volume 2-form on M is

√
1 +

(
∂f
∂x

)2
+
(
∂f
∂y

)2
dx ∧ dy.



Solution: With z = f(x, y)

dz =
∂f

∂x
dx+

∂f

∂y
dy

Way 1: Using the local expression for the metric volume form (Boothby pg 219/Lee Prop.
9.21)

dx2+dy2+dz2 =

(
1 +

(
∂f

∂x

)2
)
dx2+

∂f

∂x

∂f

∂y
dxdy+

∂f

∂y

∂f

∂x
dydx+

(
1 +

(
∂f

∂y

)2
)
dy2

The metric gij is given by the matrix1 +
(
∂f
∂x

)2
∂f
∂x

∂f
∂y

∂f
∂y

∂f
∂x 1 +

(
∂f
∂y

)2

 .

Then g = det(gij) = 1 +
(
∂f
∂x

)2
+
(
∂f
∂y

)2
and the volume form is

√
gdx ∧ dy.

Way 2: Taking the cross product of the tangent vectors (1, 0, ∂f∂x ) and (0, 1, ∂f∂y ) gives a normal
vector field

N = −∂f
∂x

∂

∂x
− ∂f

∂y

∂

∂y
+

∂

∂z
.

and unit normal n = N
||N || . Then the volume form on M is given by

ιn(dx ∧ dy ∧ dz) =
1

||N ||

(
−∂f
∂x
dy ∧ dz +

∂f

∂y
dx ∧ dz + dx ∧ dy

)
=

1

||N ||

(
−
(
∂f

∂x

)2

dy ∧ dx+

(
∂f

∂y

)2

dx ∧ dy + dx ∧ dy

)

=

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dx ∧ dy.

5. Let γ : [0, 2π]→ R3 be the ‘slinky curve’

γ(t) =

(
cos(t)(cos(10t) + 2), sin(t)(cos(10t) + 2),

2t

3
+ sin(10t)

)
and let α = ydx+ xdy + dz. Compute

∫
γ α.

Solution: Note that dα = dy ∧ dx + dx ∧ dy = 0, so α is closed and therefore exact.
There is some f(x, y, z) with df = α. Since ∂f

∂z = 1, f(x, y, z) = g(x, y) + z. Since ∂f
∂x = y,

g(x, y) = xy+ h(y), so f = xy+ z + h(y). Finally, ∂f
∂y = x, so h(y) = c for some constant c

(which we set to zero) so that f(x, y, z) = xy + z.



Now γ(0) = (3, 0, 0) and γ(2π) = (3, 0, 4π/3), so that∫
γ
α =

∫
γ
df = f(3, 0, 4π/3)− f(3, 0, 0) = 4π/3

6. Let Dn and Sn−1 be the unit ball and unit sphere in Rn.

(a) With

µ =
n∑
i=1

(−1)i−1xidx1 ∧ dx2 ∧ · · · d̂xi · · · ∧ dxn,

show that µ|Sn−1 is the volume form on Sn−1.

(b) Show that volSn−1 = n volDn. Hint: Apply Stokes’ theorem to µ integrated over Sn−1.

Solution:

(a) The unit normal field to Sn−1 is given by N =
∑n

i=1 x
i ∂
∂xi

, and

ιNdx
1 ∧ · · · ∧ dxn = µ

(b) Compute dµ = ndx1 ∧ · · · ∧ dxn. Then applying Stokes’ Theorem with Sn−1 = ∂Dn,

volSn−1 =

∫
Sn−1

µ =

∫
Dn

dµ =

∫
Dn

ndx1 ∧ · · · ∧ dxn = n volDn.

7. Let (M, g) be a Riemannian manifold with metric two-form g. A vector field X ∈ X(M) is
called a Killing field if LXg = 0. Let X be a complete Killing field with flow φt : M →M .

This problem is to show that X preserves lengths of curves on M (and therefore preserves
distances between points of M).

Suppose γ : [a, b]→ M is a smooth curve. Then φt ◦ γ is also a smooth curve. Show that, for
all t,

len(φt ◦ γ) = len(γ)

Hint: Show that the t derivative of the length vanishes.



Solution:

∂

∂t
len(φt ◦ γ) =

∂

∂t

∫ b

a

√
g
(
(φt ◦ γ)′(s), (φt ◦ γ)′(s)

)
ds (1)

=

∫ b

a

∂

∂t

√
g
(
Tφtγ′(s), Tφtγ′(s))ds (2)

=

∫ b

a

∂

∂t

√
(φ∗t g)(γ′(s), γ′(s))ds (3)

=

∫ b

a

1

2
√

(φ∗t g)(γ′(s), γ′(s))

∂

∂t
(φ∗t g)(γ′(s), γ′(s))ds (4)

=

∫ b

a

1

2
√

(φ∗t g)(γ′(s), γ′(s))
(LXg)(γ′(s), γ′(s))ds (5)

= 0 (6)

So the function len(φt ◦ γ) has vanishing t deriviative, and is constant in t.

8. Let α, β be k-forms on a smooth n-manifold M . Let S be a k-dimensional submanifold of M
(without boundary). If [α] = [β] ∈ Hk(M), (i.e. α and β represent the same cohomology class)
then show that ∫

S
α =

∫
S
β

Solution: Write α = β + dτ for some k − 1 form τ . Then applying Stokes’ Theorem,∫
S
α =

∫
S
β + dτ =

∫
S
β +

∫
S
dτ =

∫
S
β +

∫
∂S
τ =

∫
S
β

Here are some reasonable questions from our texts, that were not already assigned.
From Lee: Ch1 Problem 19. Ch 2 Exercises 2.82, 2.90, 2.100, 2.111, 2.117. Ch2 Problems 3,4,

23, 24, 30. Ch6 Problem 1. Ch 7 Problem 6. Ch 8 Exercises 8.11, 8.18, 8.52, 8.70, 8.71, 8.72, 8.77,
8.80. Ch 8 Problems 2,4,6,9,10,11,12. Ch 9 Exercises 9.58, 9.59. Ch 9 Problem 1. Ch 10 Exercises
10.1, 10.2. Ch 10 Problems 1, 5, 7, 8, 9.

From Boothby (Chapter V): Section 1# 3,7. Section 3 # 1, 4, 7. Section 5 # 2, 6. Section 6
# 1, 2, 3, 4, 7. Section 8 # 3,5,6,7,8.


