Math 642 Good Problems

1. For a one form $\omega \in \mathcal{T}^1(M)$, suppose that, for all vector fields $X, \mathcal{L}_X \omega = 0$. Prove that the coefficients ω_i are constant functions in any coordinate system.

Solution: Generally, $(\mathcal{L}_X \omega)(Y) = X \cdot \omega(Y) - \omega([X, Y])$. Let x^1, \ldots, x^n be local coordinates on M, and write $\omega = \sum_i \omega_i dx^i$. Using $X = \frac{\partial}{\partial x^i}$, $Y = \frac{\partial}{\partial x^j}$, we have $[X, Y] = 0$ and

$$
0 = (\mathcal{L}_X \omega)(Y) = X.\omega(Y) = X.\omega_j = \frac{\partial \omega_j}{\partial x^i}.
$$

Since ω_j has all of it's partial derivatives equal to zero, ω_j is constant.

2. Recall that M is parallelizable if the tangent bundle TM is trivial. Show that a parallelizable manifold is orientable. Give an example to show that an orientable manifold need not be parallelizable.

Solution: Parallelizable means $TM = M \times \mathbb{R}^n$, or equivalently there are *n* non-vanishing vector fields on M which form a basis for each tangent space.

The sphere S^2 is orientable but TS^2 is non-trivial - there is no non-vanishing vector field on S^2 .

If M is parallelizable, let e_1, \ldots, e_n be a basis for \mathbb{R}^n and let e^1, \ldots, e^n be the dual basis. Then $\mu : M \to \bigwedge^n TM = M \times \bigwedge^n \mathbb{R}^n$ by $\mu(p) = (p, e^1 \wedge \cdots \wedge e^n)$ is a non-vanishing *n*-form on M , so M is oriented.

Another approach: let X_1, \ldots, X_n be non-vanishing vector fields on M which give a basis for $T_p(M)$ for all $p \in M$. Let $\omega_1, \ldots, \omega_n \in \bigwedge^1(M)$ give, at each point p, the basis of $T_p^*(M)$ dual to the X_i . Then $\mu = \omega_1 \wedge \cdots \wedge \omega_n$ is an *n*-form on M, and μ is nonvanishing since $\mu(X_1, \ldots, X_n) = 1.$

3. Let $\phi \in \mathcal{T}^2(M)$ be a two-tensor, and define $\phi_{\Delta}(X) = \phi(X, X)$. Does ϕ_{Δ} define a one-form?

Solution: No, unless $\phi_{\Delta} \equiv 0$.

Suppose ϕ_{Δ} is a one-form. For any $X \in \mathfrak{X}(M)$ and any C^{∞} function f,

$$
f\phi_{\Delta}(X) = \phi_{\Delta}(fX) = \phi(fX, fX) = f^2\phi(X, X) = f^2\phi_{\Delta}(X)
$$

If $\phi_{\Delta}(X)$ is not identically zero, then there is X so that $\phi_{\Delta}(X) \neq 0$ at some point $p \in M$. Then $f(p) = f(p)^2$ for any smooth function f on M, including, for example $f(x) \equiv 2$. This is a contradiction.

4. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a smooth function and let M be the graph of f with the metric induced from \mathbb{R}^3 . Show that the metric volume 2-form on M is $\sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} dx \wedge dy$.

Solution: With $z = f(x, y)$

$$
dz = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy
$$

Way 1: Using the local expression for the metric volume form (Boothby pg 219/Lee Prop. 9.21)

$$
dx^{2} + dy^{2} + dz^{2} = \left(1 + \left(\frac{\partial f}{\partial x}\right)^{2}\right)dx^{2} + \frac{\partial f}{\partial x}\frac{\partial f}{\partial y}dxdy + \frac{\partial f}{\partial y}\frac{\partial f}{\partial x}dydx + \left(1 + \left(\frac{\partial f}{\partial y}\right)^{2}\right)dy^{2}
$$

The metric g_{ij} is given by the matrix

$$
\begin{pmatrix} 1 + \left(\frac{\partial f}{\partial x}\right)^2 & \frac{\partial f}{\partial x}\frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y}\frac{\partial f}{\partial x} & 1 + \left(\frac{\partial f}{\partial y}\right)^2 \end{pmatrix}.
$$

Then $g = det(g_{ij}) = 1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2$ and the volume form is $\sqrt{g}dx \wedge dy$.

Way 2: Taking the cross product of the tangent vectors $(1,0,\frac{\partial f}{\partial x})$ and $(0,1,\frac{\partial f}{\partial y})$ gives a normal vector field

$$
N = -\frac{\partial f}{\partial x}\frac{\partial}{\partial x} - \frac{\partial f}{\partial y}\frac{\partial}{\partial y} + \frac{\partial}{\partial z}.
$$

and unit normal $n = \frac{N}{\|N\|}$. Then the volume form on M is given by

$$
\iota_n(dx \wedge dy \wedge dz) = \frac{1}{||N||} \left(-\frac{\partial f}{\partial x} dy \wedge dz + \frac{\partial f}{\partial y} dx \wedge dz + dx \wedge dy \right)
$$

=
$$
\frac{1}{||N||} \left(-\left(\frac{\partial f}{\partial x}\right)^2 dy \wedge dx + \left(\frac{\partial f}{\partial y}\right)^2 dx \wedge dy + dx \wedge dy \right)
$$

=
$$
\sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} dx \wedge dy.
$$

5. Let $\gamma : [0, 2\pi] \to \mathbb{R}^3$ be the 'slinky curve'

$$
\gamma(t) = \left(\cos(t)(\cos(10t) + 2), \sin(t)(\cos(10t) + 2), \frac{2t}{3} + \sin(10t)\right)
$$

and let $\alpha = ydx + xdy + dz$. Compute $\int_{\gamma} \alpha$.

Solution: Note that $d\alpha = dy \wedge dx + dx \wedge dy = 0$, so α is closed and therefore exact. There is some $f(x, y, z)$ with $df = \alpha$. Since $\frac{\partial f}{\partial z} = 1$, $f(x, y, z) = g(x, y) + z$. Since $\frac{\partial f}{\partial x} = y$, $g(x, y) = xy + h(y)$, so $f = xy + z + h(y)$. Finally, $\frac{\partial f}{\partial y} = x$, so $h(y) = c$ for some constant c (which we set to zero) so that $f(x, y, z) = xy + z$.

Now $\gamma(0) = (3, 0, 0)$ and $\gamma(2\pi) = (3, 0, 4\pi/3)$, so that

$$
\int_{\gamma} \alpha = \int_{\gamma} df = f(3, 0, 4\pi/3) - f(3, 0, 0) = 4\pi/3
$$

- 6. Let D^n and S^{n-1} be the unit ball and unit sphere in \mathbb{R}^n .
	- (a) With

$$
\mu = \sum_{i=1}^{n} (-1)^{i-1} x^i dx^1 \wedge dx^2 \wedge \cdots \widehat{dx^i} \cdots \wedge dx^n,
$$

show that $\mu|_{S^{n-1}}$ is the volume form on S^{n-1} .

(b) Show that vol $S^{n-1} = n$ vol D^n . Hint: Apply Stokes' theorem to μ integrated over S^{n-1} .

Solution:

(a) The unit normal field to S^{n-1} is given by $N = \sum_{i=1}^{n} x^i \frac{\partial}{\partial x^i}$, and

$$
\iota_N dx^1 \wedge \dots \wedge dx^n = \mu
$$

(b) Compute $d\mu = ndx^1 \wedge \cdots \wedge dx^n$. Then applying Stokes' Theorem with $S^{n-1} = \partial D^n$,

$$
\text{vol}\,S^{n-1} = \int_{S^{n-1}} \mu = \int_{D^n} d\mu = \int_{D^n} n dx^1 \wedge \dots \wedge dx^n = n \,\text{vol}\,D^n.
$$

7. Let (M, g) be a Riemannian manifold with metric two-form g. A vector field $X \in \mathfrak{X}(M)$ is called a Killing field if $\mathcal{L}_X g = 0$. Let X be a complete Killing field with flow $\phi_t : M \to M$.

This problem is to show that X preserves lengths of curves on M (and therefore preserves distances between points of M).

Suppose $\gamma : [a, b] \to M$ is a smooth curve. Then $\phi_t \circ \gamma$ is also a smooth curve. Show that, for all t ,

$$
\operatorname{len}(\phi_t \circ \gamma) = \operatorname{len}(\gamma)
$$

Hint: Show that the t derivative of the length vanishes.

Solution:

$$
\frac{\partial}{\partial t} \operatorname{len}(\phi_t \circ \gamma) = \frac{\partial}{\partial t} \int_a^b \sqrt{g\big((\phi_t \circ \gamma)'(s), (\phi_t \circ \gamma)'(s)\big)} ds \tag{1}
$$

$$
= \int_{a}^{b} \frac{\partial}{\partial t} \sqrt{g(T\phi_t \gamma'(s), T\phi_t \gamma'(s))} ds \tag{2}
$$

$$
= \int_{a}^{b} \frac{\partial}{\partial t} \sqrt{(\phi_t^* g)(\gamma'(s), \gamma'(s))} ds \tag{3}
$$

$$
= \int_{a}^{b} \frac{1}{2\sqrt{(\phi_t^* g)(\gamma'(s), \gamma'(s))}} \frac{\partial}{\partial t} (\phi_t^* g)(\gamma'(s), \gamma'(s)) ds \tag{4}
$$

$$
= \int_{a}^{b} \frac{1}{2\sqrt{(\phi_t^*g)(\gamma'(s), \gamma'(s))}} (\mathcal{L}_X g)(\gamma'(s), \gamma'(s)) ds
$$
(5)
= 0 (6)

So the function
$$
len(\phi_t \circ \gamma)
$$
 has vanishing t derivative, and is constant in t.

8. Let α, β be k-forms on a smooth *n*-manifold M. Let S be a k-dimensional submanifold of M (without boundary). If $[\alpha] = [\beta] \in H^k(M)$, (i.e. α and β represent the same cohomology class) then show that

$$
\int_{S} \alpha = \int_{S} \beta
$$

Solution: Write $\alpha = \beta + d\tau$ for some $k - 1$ form τ . Then applying Stokes' Theorem, Z S $\alpha =$ S $\beta + d\tau =$ S $\beta +$ S $d\tau =$ S $\beta +$ ∂S $\tau =$ S β

Here are some reasonable questions from our texts, that were not already assigned.

From Lee: Ch1 Problem 19. Ch 2 Exercises 2.82, 2.90, 2.100, 2.111, 2.117. Ch2 Problems 3,4, 23, 24, 30. Ch6 Problem 1. Ch 7 Problem 6. Ch 8 Exercises 8.11, 8.18, 8.52, 8.70, 8.71, 8.72, 8.77, 8.80. Ch 8 Problems 2,4,6,9,10,11,12. Ch 9 Exercises 9.58, 9.59. Ch 9 Problem 1. Ch 10 Exercises 10.1, 10.2. Ch 10 Problems 1, 5, 7, 8, 9.

From Boothby (Chapter V): Section $1\# 3,7$. Section $3\# 1, 4, 7$. Section $5\# 2, 6$. Section 6 $\#$ 1, 2, 3, 4, 7. Section 8 $\#$ 3,5,6,7,8.