Math 642 Good Problems

1. For a one form w € T*(M), suppose that, for all vector fields X, Lxw = 0. Prove that the
coefficients w; are constant functions in any coordinate system.

Solution: Generally, (Lxw)(Y) = X.w(Y)—-w([X, Y]) Let 21, ..., 2" be local coordinates
on M, and write w = >, w;da’. Usmg = d Y = aza’ we have [X,Y] =0 and
8Wj
0=(Lxw)(Y)=Xwl)=Xw; = Bl

Since w; has all of it’s partial derivatives equal to zero, w; is constant.

2. Recall that M is parallelizable if the tangent bundle T'M is trivial. Show that a parallelizable
manifold is orientable. Give an example to show that an orientable manifold need not be
parallelizable.

Solution: Parallelizable means T'M = M x R", or equivalently there are n non-vanishing
vector fields on M which form a basis for each tangent space.

The sphere S? is orientable but T'S? is non-trivial - there is no non-vanishing vector field
on S2.

If M is parallelizable, let eq,...,e, be a basis for R" and let e!,...,e" be the dual basis.
Then p: M — N"TM = M x A" R™ by u(p) = (p,e! A--- Ae™) is a non-vanishing n-form
on M, so M is oriented.

Another approach: let X1,..., X, be non-vanishing vector fields on M which give a basis
for Tp,(M) for all p € M. Let wy, ...,w, € A'(M) give, at each point p, the basis of T, (M)

dual to the X;. Then yu = w; A --- Aw, is an n-form on M, and p is nonvanishing since
WXy, ..., X,) =1

3. Let ¢ € T?(M) be a two-tensor, and define ¢pa(X) = ¢(X, X). Does ¢a define a one-form?

Solution: No, unless ¢pa = 0.

Suppose ¢a is a one-form. For any X € X(M) and any C* function f,
FOa(X) = ¢a(fX) = 6(fX, [X) = f*¢(X, X) = f*¢a(X)

If pa(X) is not identically zero, then there is X so that ¢a(X) # 0 at some point p € M.
Then f(p) = f(p)? for any smooth function f on M, including, for example f(z) = 2. This
is a contradiction.

4. Let f : R? = R be a smooth function and let M be the graph of f with the metric induced

2 2
from R3. Show that the metric volume 2-form on M is \/1 + (%) + (%) dx N dy.



Solution: With z = f(z,y)

af of
dz = —dx + —d
T B T y Y
Way 1: Using the local expression for the metric volume form (Boothby pg 219/Lee Prop.

9.21)

af\? af d af d af\>
de’+dy? +d=> = [ 1+ or d:c2+—f—fd:cdy+—f—fdydx+ 1+ of dy?

Oz Oz Oy 0y Ox oy

The metric g;; is given by the matrix

2
of af of
1+ (%) 0 0y

2
of of of
o 1+ (%)
2 2
Then g = det(g;;) =1+ (%) + (%) and the volume form is /gdz A dy.

Way 2: Taking the cross product of the tangent vectors (1,0, %) and (0,1, %) gives a normal

vector field of o7 o 9

and unit normal n = H—NH Then the volume form on M is given by
1 af of
tn(de Ndy Ndz) = ——— <—dy/\dz+d:c/\dz+da:/\dy>
| DA oy
1

2 2
:m (— <g£) dy N dx + (g’;j) da:/\dy+dmAdy>

2 2
:\/14_((;:];) +<g£> dx N dy.

5. Let v :[0,27] — R3 be the ‘slinky curve’
: 2t
~(t) = (cos(t)(cos(lOt) + 2), sin(¢)(cos(10t) + 2), 3 + sm(lOt))

and let a = ydz + xdy + dz. Compute fﬂ/ a.

Solution: Note that dao = dy A dx + dx AN dy = 0, so « is closed and therefore exact.
There is some f(z,y,z) with df = a. Since % =1, f(z,y,2) = g(x,y) + z. Since % =y,
g(z,y) =xy+ h(y), so f =xy+ z+ h(y). Finally, % =z, so h(y) = ¢ for some constant ¢

(which we set to zero) so that f(z,y,2) = zy + .




Now ~v(0) = (3,0,0) and v(27) = (3,0,47/3), so that

/a :/df: F£(3,0,47/3) — £(3,0,0) = 4x/3
Y Y

6. Let D™ and S™~! be the unit ball and unit sphere in R”.
(a) With

n
= Z(—l)i_llfidxl ANdZ? A - dat - A da™,
=1

show that pi|gn-1 is the volume form on S™~!.

(b) Show that vol S"~! = nvol D". Hint: Apply Stokes’ theorem to y integrated over S™~1.

Solution:

(a) The unit normal field to S"~! is given by N = Sy x 8(33“ and

ivdzt Ao AN da™ = p

(b) Compute du = ndx' A --- A dx™. Then applying Stokes” Theorem with S"~! = 9D",

VOlSnl:/ /,L:/ du:/ ndz! A --- A dz™ = nvol D"
Sn—1 n n

7. Let (M, g) be a Riemannian manifold with metric two-form g. A vector field X € X(M) is
called a Killing field if Lxg = 0. Let X be a complete Killing field with flow ¢, : M — M.

This problem is to show that X preserves lengths of curves on M (and therefore preserves
distances between points of M).

Suppose 7 : [a,b] — M is a smooth curve. Then ¢; o+ is also a smooth curve. Show that, for
all ¢,

len(¢¢ 0y) = len(y)

Hint: Show that the t derivative of the length vanishes.




Solution:

%len (proy) = Gt/ \/9 ¢tO’Y (¢t07)/(5))d5 (1)
:/a O Jo(@or (), o ())ds (2)
b
- [ gty enas Q
-/ b : D (610 (). (5))ds (1)
o 2/ (@79) (7 ()7 () Ot ’

b 1
L '(5),7/(s))ds 5
/a N CTICIOR IO AR (5)
" (©)

So the function len(¢; o v) has vanishing ¢ deriviative, and is constant in ¢.

8. Let a, B be k-forms on a smooth n-manifold M. Let S be a k-dimensional submanifold of M
(without boundary). If [a] = [3] € H*(M), (i.e. « and f3 represent the same cohomology class)

/ /
S S

Solution: Write a = 8 + dr for some k£ — 1 form 7. Then applying Stokes’ Theorem,

/Sa—/sﬁ—i-dT—/Sﬂ—i-/SdT—/SB—&-/asT—/Sﬁ

Here are some reasonable questions from our texts, that were not already assigned.

From Lee: Chl Problem 19. Ch 2 Exercises 2.82, 2.90, 2.100, 2.111, 2.117. Ch2 Problems 3,4,
23, 24, 30. Ch6 Problem 1. Ch 7 Problem 6. Ch 8 Exercises 8.11, 8.18, 8.52, 8.70, 8.71, 8.72, 8.77,
8.80. Ch 8 Problems 2,4,6,9,10,11,12. Ch 9 Exercises 9.58, 9.59. Ch 9 Problem 1. Ch 10 Exercises
10.1, 10.2. Ch 10 Problems 1, 5, 7, 8, 9.

From Boothby (Chapter V) Section 1# 3,7. Section 3 # 1, 4, 7. Section 5 # 2, 6. Section 6
# 1,2, 3,4, 7. Section 8 # 3,5,6,7,8.



