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Math 641 Good Problems

Questions get two ratings: A number which is relevance to the course material, a measure of
how much I expect you to be prepared to do such a problem on the exam. 3 means ‘of course you
know this information’, 1 means ‘you probably need to check something in the book for this one’.
Given that you know the material, the starred problems are harder.

Reasonable questions from Lee: Exercises 2.66, 2.77. Ch 2 Problems 11,13,16,23. Exercises
3.6-3.9. Ch 3 Problems 1,2,5,7,11. Exercises 4.6,4.16. Equation (4.8). Problem 4.12. Exercise 6.48.

1. Show that a connected manifold is path connected.

Solution: Pick p € M. Let C' = {z € M|There is a path between = and p}.

If z € C, choose a chart (U, ) containing = and a path ¢ from p to x. Since ¢(U) is open
in R™, there is r > 0 with the open ball B = B(p(x),7) C »(U). For any y € ¢ *(B),
there is a path s from ¢(z) to ¢(y) in B, so that ¢! o s is a path in M from z to y. Then
c followed by ¢~! o s is a path in M from p to y, so that y € C. That is, C contains the
open neighborhood ¢~!(B) of z, and so C is open.

2. Let D be a derivation on C°°(M). Suppose f,g € C°(M), and that g is never 0. Prove the

quotient rule:
D (f) _yDf—fDg
g 9

Solution: Since g # 0, f/g € C°°(M). Then by Leibniz’ rule:
g g g

Solving for D(f/g) gives the result.

3. Given a sequence of open sets {U;}°; with U,, C Up41 for all n, and with U, U,, = M. Say
that a sequence w1, z2,... leaves all U if for any n there is N so that x; ¢ U, for i > N.

Show that there is a smooth function f : M — R so that lim;_, f(x;) = 400 for any sequence
{z;}32, which leaves all U.

Solution: Let b, be a cutoff function which is 1 on U,,_1 and 0 on the complement of U,
(for n = 1, set by = 0). Let ¢, = 1 — by, so ¢, is 0 on U,_1 and 1 outside of U,. For
x € U,, there is a neighborhood V C U, of x, and for any i > n, ¢; = 0 on V. Define
[ =" ¢, which is a finite sum in a neighborhood of any z, so f is smooth.

Suppose a sequence {x;} leaves all U. Given n > 0, there is N so that z; ¢ U, for i > N.
Then for i > N, z; ¢ Uy, so

f(zi) > Z Zl =n
k=1

which shows f(z;) — oo.




(3) 4. Which of these homeomorhpisms are diffeomorphisms from R? — R2?
(a) (z,y) = (2°,9°)
(b) (z,y) = (2° + z,9° +y)
(c) (x,y) = (zcos(x? + y?) — ysin(z? + y2), zsin(z? + y?) + y cos(z? + 32))

Solution: Parts b,c are diffeos but a is not. Part ¢ rotates (x, %) by the angle r? = 22 + 2.

(**2) 5. Let M(2) denote the space of 2 x 2 matrices with real entries. Let N = {A € M(2)|A #
0,det(A) = 0}. Show that N is a manifold.

Solution:
Way 1: Let U, be the set of matrices in N with nonzero left column, and U, be the set
of matrices in N with nonzero right column. Note that N = U, UU,. For A €

T AT

Uy, write A = (y Ay) (which we can do because the columns of A are linearly

dependent). Put ¢¢(4) = (z,y,A). Similarly, for A € U,, write A = <i'§ ;)

and put ¢.(A) = (z,y,A). On Uy N U,, the change of coordinates map is given by
(67t 0 @) (w,y,\) = (Az, Ay, A\™1), which is smooth. The inverse ¢, ' o ¢, has the
same formula and is also smooth. Then (Uy, ¢¢) and (Uy, ¢,) define an atlas on N.

Way 2: For A € N, the kernel of A is a line through the origin. Let U, be the set of
A € N whose kernel is not horizontal, and U, be the A with kernel which is not
vertical. For A € Up, let 8 € (0,7) be the angle that ker A makes with the positive
cosf) —sin6

z-axis (well defined on Uy). Let Ry = (sin0 cosf

), clockwise rotation by 6.

Then ARy <(1)> =0, s0 ARy = <8 5) and define ¢p,(A) = (z,y,0). Note (5) =
!
positive slope, ¢p(A4) = ¢,(A) so the coordinate change is just the identity. When
ker A has negative slope, if p,(A) = (z,y,0) then ¢,(A) = (—z,—y,0 — 7) since
Ry_n = —Ry. Then (U, pp) and (Uy, ¢,) define an atlas on N.

>. Similarly define ¢,(A) on U,, except 6 € (—n/2,7/2). When ker A has

Note: Way 1 and way 2 are reminescent of putting stereographic and angular coordinates
on a circle, respectively. In both cases, it’s easy to see that the set of matrices in N
with a fixed A or 6 form a two dimensional vector space, so that N is a vector bundle
over the circle. N is a trivial bundle over S! (show it!) so that N is diffeomorphic to
R? x St

Bonus: Generalize these results to N C M(n), the set of n x n matrices with one dimensional
kernel. What dimension is N? Generally, N is a bundle over RP"~! with projection
7: N — RP" ! given by m(A) = ker A. Is this a trivial bundle?




(3) 6. For a smooth map of manifolds f : M — N, say that f is self-transverse if for all x,y € M
there are neighborhoods x € U, y € V so that f|y h f|v.

(a) Give an example of M, N and f: M — N which is not self-transverse.
(b) Give an example of M, N and f: M — N which is self-transverse and not injective.

(¢) Suppose f : M — N is a self-transverse immersion. Show K = {zx € M |32’ € M with f(x)
f(2")} is a regular submanifold of M.

Except that part (c) is false! (*) Give an example to show part (c) is false.

Solution:

(a) Here are some: f:R — R? by f(t) = (cost,sint) is not self-transverse, for example
between ¢t = 0 and ¢ = 2. Any curve in R? which intersects itself is not self-transverse.
If M is the dijoint union of two lines, f : M — R? by f(s) = (s,0) and f(t) = (¢,t?)
is not self-transverse.

(b) f could map a disjoint union of two lines onto the two axes in R%. Or, let f(t) =
(tcos(t),tsin(t)), a spiral whose ¢ > 0 branch has transverse intersection with its ¢ < 0
branch.

(c) Let M be the disjoint union of three copies of R? and map M to the three coordinate
planes in R3. Then M is self-transverse, but in each copy of R?, K is the union of the
coordinate axes, which is not a manifold.

(*2) 7. Let M be a regular submanifold of N, and let X be a vector field on M. Show there is a vector
field X on N with X[ = X.

Solution: For p € M, let (z1,...,x,) be single slice coordinates on an open set U C
N with p € U. So MnU = {(x1,...,2m,0,...,00} NU. On M NU, write X =
o Xi(z, . ,xm)a%i. Define a vector field on U by

- n )
Xv(x1,...,2pn) = ZXi(xl, e ’xm)am
i=1 g

so that Xy|M = X.

Let V = N — M, and define Xy, = 0. Now V and the collection of U as above are an open
cover for M. Take a locally finite refinement of this cover, say {W,}. Each W, is a subset
of some U (or V), so each has a vector field X, = Xy|w, . Let {@q} be a partition of unity
subordinate to {W,}. Define X = Ya ¢©aXa. Fix p € M, if p € W, for some «, then
Xa(p) = X(p). Therefore

X(p)= Y. va@Xalp) = D ¢alp)| X(p)=X(p).

a,pGWa avPGW(X




(2) 8. Show that the set of closed disks in R? which don’t contain the origin is a manifold, and show
it is diffeomorphic to S* x R2.

Solution: We can parameterize the set of closed disks by one chart with domain H =
{(z,y,2) € R3z > 0}, by sending (z,y,2) € H to a disk with center (z,y) and radius z.
Those which don’t contain the origin form a manifold because they correspond to the open
set V = {(z,9,2)|z* +y? > 22} C H.

Given (€,a,b) € S' x R?, define
F(6%,0,8) = (% + ¢?) cos(8), (° + ¢?) sin(6), ") = (z,,2) € V

This map is well defined since adding 27 to 6 has no effect on (z,y,z). f is smooth,

_to- -1 — (_zty 2 2 _ ;
one-to-one onto V', and f~'(x,y, 2) (\/W, log(v/2? + y? — 2),log 2) is also smooth.

(1) 9. Let o be a curve (embedded 1-manifold) in R?, and let o, be the rescaled image of o under the
map (z,y,2) — (ax,ay,az), for some a > 0. For p € o, compute the curvature of o, at ap in
terms of a and the curvature of o at p.

Solution: Let o(t) be a unit speed parameterization with o(0) = p. Then o,(t) = ac(t/a)
is a unit speed parameterization of o, with 0,(0) = ap. Compute the unit tangent vector
and it’s derivative as:

04(t) = o' (t/a) (1)
Ta(t) = T(t/a) (2)

Ti(t) = ~T(t/a) 3)

Since both curves are unit speed, the curvature satisfies rq(ap) = (p).

(2) 10. Suppose M is an embedded surface in R3, and let N be the rescaled image of M under the
map (x,y, z) = (ax, ay, az), for some a > 0. Compute the Gauss curvature Ky (ap) of N at ap
in terms of a and the Gauss curvature K;(p) of M at p.

Solution: Let o(t) be a unit speed curve in N with ¢(0) = ap. Put 7(¢) = 1o(at), a curve
in M. Notice 7/(t) = 1o/(at) - a = o’(at), so T also has unit speed, and 7/(0) = ¢/(0). This
shows the tangent planes 7T,M and T,,N are parallel, so a unit normal vector for M at p
is also a unit normal vector for NV at ap. Let n be a unit normal field on M and also for
N, which means n(ap) = n(p).




Now compute the shape operator Sy on IV in terms of Sy on M:

S (o' (0) = (mo o) (0) = Emar(t/a)| (1
= n(r{t/a)| = mor() 0
_ ésM(T'(o)) - %SM(O'/(O)). (6)

So Sy = 18y and, taking determinants, Ky (ap) = Q%KM(p). Note that this checks with
the situation where M is a sphere of radius 1, where K;; = 1, and N is a sphere of radius
a with KN = L

a?’
It is also possible to do this by showing that curvature scales by % for curves, and since
Gauss curvature is the product of the two principal curvatures it must scale by a%

(1*%) 11. Let ¢ = c(s) be a unit speed curve in R3, and suppose the Frenet frame T, N, B is defined for
all s. Define f : R? — R3 by f(s,t) = c(s)+tN(s). Notice that for fixed s, f(s,t) is the normal

line to the curve at ¢(s), and for fixed ¢, f(s,t) is a curve ‘parallel’ to ¢ at distance t.
Find all points where f fails to be an immersion.

In the case where c is a planar curve, f : R? — R? and these points are the critical values of f.

Solution: Let x and 7 be the curvature and torsion of ¢, and recall N' = —xT + 7B.
0
a—f:c’+tN’:T—mT+tTB:(1—t/~@)T+trB. (7)
S
of
— = N. 8
T (8)

f is an immersion except when these two vectors are dependent, which we can check with
the cross product:
of _of _

axa—(l—tm)B—tTT.

Since B and T are independent, this vanishes when ¢7 = 0 and 1 — ¢tk = 0. Since tk = 1,

neither ¢t nor x can vanish. Therefore, f is an immersion except when both 7(s) = 0 and

_ 1
t= -

Additional remark: Geometrically, 7 = 0 means that c is planar to 3rd order at p = ¢(s).
Normally a curve is planar only to 2nd order — see Lee, Exercise 4.7 for a Taylor expansion
that shows this. The critical value is then in the plane of the curve, at % along the normal
line from p. This is the center of curvature for the curve at p, which is the center of a circle
(radius é) that is tangent to the curve at p to order 2. When ¢ is a plane curve, the set
of critical values of f is known as the evolute of c. The Wikipedia page for evolute has a
pretty animation of f as s varies.




(2) 12. Let M(2) denote the vector space of 2 x 2 matrices. Since M (2) is a vector space, the tangent
space to M (2) at the identity is naturally identified with M (2). Let SL(2) C M(2) be the set
of matrices of with determinant 1.

(a) Show that SL(2) is a manifold.
(b) What is dim SL(2)?

(c) * Show that the tangent space at the identity, T7SL(2), is exactly the space of traceless
matrices {A € M(2)|tr(A) = 0}.

Bonus: Do this problem for n x n matrices instead of 2 x 2.

Solution: For A = <CCL Z), det A = ad — be. Then T'det = (d, —c, —b, a) which has rank
1 unless A = 0. So any value other than 0 is a regular value for det. In particular, 1 is
a regular value for det, so SL(2), the set of matrices with determinant 1, is a manifold.

Because dim M (2) = 4 and det has rank 1, dim SL(2) = 3.
Let X be a tangent vector to SL(2) at the identity. Represent X by a curve C(t) =

a(t) b(t) . 7 and CNO) — - lnow de L take the
(C(t) d(t)> € SL(2), with C(0) = I and C’(0) = X. We know det C(t) = 1, so take th

derivative of both sides to get

S al)d(r) ~ b(e)e(t))|_ = 0,50 )
a(0)d(0) + a(0)d'(0) — ¥ (0)¢(0) — b(0)&(0) = 0 (10)

Now C(0) =1, so b(0) = ¢(0) = 0 and a(0) = d(0) = 1, so we get a’(0) + d'(0) = 0, or that
0=trC'(0) =tr X.
Although one can generalize the argument above for n > 2 using the combinatorial defini-

tion of determinant as a sum over permutations, an easier approach is to write det C(t) as
a product of the eigenvalues of C(t).

(*1) 13. Suppose M C R3 is a surface, and assume that for any closed curve C : S — M there is a
continuous unit normal field to M defined along C'. Show that M is orientable.

Solution: Assume M is connected. If not, orient each component of M separately. Let
po € M, and let Ny be a unit normal to M at pg. For p € M, choose any smooth curve
o joining po with p, and extend Ny along o to a unit normal vector N,. We need to show
N, is well defined. Suppose 7 is any other curve joining pg with p. Together, o and 7 form
a closed curve C, so there is a continuous unit normal field V' along C, and by replacing
with —V if necessary, we may assume V = Ny at pg. Then the extension of Ny along o
agrees with V' at p, and so does the extension of Ny along 7, so N, is well defined. Then
N is a unit normal field on M and M is orientable. (This solution lacks detail, like how
to extend along a curve, what if joining 7 and o isn’t smooth, and explicitly showing NV is
continuous.)




(*2) 14. Let (Xy,Yn) be sterographic coordinates on S? — (0,0,1) using the north polar projection.
Let (Xgs,Ys) be stereographic coordinates on S2 — (0,0, —1) using the south polar projection.

0 0 0 0
Compute [—BXN,m] and [—8XN, m].

Solution: The coordinate change F' from north to south is given by (Xn, Yv) — (Xg,Ys) =
W(XN,YN) Compute
TR 1 YE- X% —2XnYn\ _ (YE-XZ —2XsYs
C(XE YR\ 2XNYy X3 -YR) T \-2XgYs XE-YE
Then
0 0 0
= (Y3 - X3 2Xs5Y 11
axy - Yo~ Xs)gx, — 2XsYs gy, (11)
0 0
= —2XgYg—— + (X% Y. 12
Yy Vs gxg T (Ko~ S)aYs (12)
and so
0 0 0 0
— —| =2X 2Y 13
[QXN’ axs] Soxs v, (13)
0 0 0 0
—, — | = —2Y, 2X 14
{aXN’ 8YS} Soxs S oy, (14)
The nicest expression for this result is in spherical coordinates, where
) . cos ¢ )
(0, ) — (cos @ cos ¢,sinf cos ¢, sin @) = (z,y,z) - ————(cosb,sinf) = (Xg,Ys).
1+4+sing
From this, we find
0 0 0
— =—-Ys—+X 15
90 Soxs S ovs (15)
0 0
— =—-Xg— Y- 16
S 0he = NS axs VS ovs 10)
so that
0 0 0
| = —2cos¢p— 1
[8XN’ aXJ 5955 (17)
0 0 0
=92 18
[(")XN7 8Y5] 00 (18)

(3) 15. The Whitney Embedding Theorem says that any m-manifold embeds into R?™. Give one

example of an m manifold that does not embed into R?™~ 1.



Solution: When m = 1, the circle S! does not embed into R. Suppose f : S! — R is an
embedding. Since S is compact, there is § € S! such that f(#) is the maximum value of f.
Since f is an embedding, f is a local diffeomorphism, and therefore takes a neighborhood of
6 to a neighborhood of f(#), contradicting the maximality of f(#). So no such embedding
can exists. In fact, there is not even a continuous injective map S' — R.




