Good Problems

Questions get two ratings: A number which is relevance to the course material, a measure of how much I expect you to be prepared to do such a problem on the exam. 3 means 'of course you know this information', 1 means 'you probably need to check something in the book for this one'. Given that you know the material, the starred problems are harder.

Reasonable questions from Lee: Exercises 2.66, 2.77. Ch 2 Problems 11,13,16,23. Exercises 3.6-3.9. Ch 3 Problems 1,2,5,7,11. Exercises 4.6,4.16. Equation (4.8). Problem 4.12. Exercise 6.48.

(3) 1. Show that a connected manifold is path connected.

Solution: Pick $p \in M$. Let $C = \{x \in M | \text{There is a path between } x \text{ and } p\}.$

If $x \in C$, choose a chart (U, φ) containing x and a path c from p to x. Since $\varphi(U)$ is open in \mathbb{R}^m , there is r > 0 with the open ball $B = B(\varphi(x), r) \subset \varphi(U)$. For any $y \in \varphi^{-1}(B)$, there is a path s from $\varphi(x)$ to $\varphi(y)$ in B, so that $\varphi^{-1} \circ s$ is a path in M from x to y. Then c followed by $\varphi^{-1} \circ s$ is a path in M from p to y, so that $y \in C$. That is, C contains the open neighborhood $\varphi^{-1}(B)$ of x, and so C is open.

(2) 2. Let D be a derivation on $C^{\infty}(M)$. Suppose $f, g \in C^{\infty}(M)$, and that g is never 0. Prove the quotient rule:

$$D\left(\frac{f}{g}\right) = \frac{gDf - fDg}{g^2}$$

Solution: Since $g \neq 0$, $f/g \in C^{\infty}(M)$. Then by Leibniz' rule:

$$Df = D\left(g \cdot \frac{f}{g}\right) = Dg \cdot \frac{f}{g} + gD\left(\frac{f}{g}\right)$$

Solving for D(f/g) gives the result.

(3) 3. Given a sequence of open sets {U_i}[∞]_{n=1} with U_n ⊂ U_{n+1} for all n, and with ∪[∞]_{i=1}U_n = M. Say that a sequence x₁, x₂,... leaves all U if for any n there is N so that x_i ∉ U_n for i > N. Show that there is a smooth function f : M → R so that lim_{i→∞} f(x_i) = +∞ for any sequence {x_i}[∞]_{i=1} which leaves all U.

Solution: Let b_n be a cutoff function which is 1 on U_{n-1} and 0 on the complement of U_n (for n = 1, set $b_1 = 0$). Let $\phi_n = 1 - b_n$, so ϕ_n is 0 on U_{n-1} and 1 outside of U_n . For $x \in U_n$, there is a neighborhood $V \subset U_n$ of x, and for any i > n, $\phi_i \equiv 0$ on V. Define $f = \sum_{i=1}^{\infty} \phi_i$, which is a finite sum in a neighborhood of any x, so f is smooth. Suppose a sequence $\{x_i\}$ leaves all U. Given n > 0, there is N so that $x_i \notin U_n$ for i > N. Then for i > N, $x_i \notin U_n$ so

$$f(x_i) \ge \sum_{k=1}^n \phi_k(x) = \sum_{k=1}^n 1 = n$$

which shows $f(x_i) \to \infty$.

- (3) 4. Which of these homeomorphisms are diffeomorphisms from $\mathbb{R}^2 \to \mathbb{R}^2$?
 - (a) $(x, y) \to (x^3, y^3)$ (b) $(x, y) \to (x^3 + x, y^3 + y)$ (c) $(x, y) \to (x \cos(x^2 + y^2) - y \sin(x^2 + y^2), x \sin(x^2 + y^2) + y \cos(x^2 + y^2))$

Solution: Parts b,c are diffeos but a is not. Part c rotates (x, y) by the angle $r^2 = x^2 + y^2$.

(**2) 5. Let M(2) denote the space of 2×2 matrices with real entries. Let $N = \{A \in M(2) | A \neq 0, \det(A) = 0\}$. Show that N is a manifold.

Solution:

Way 1: Let U_{ℓ} be the set of matrices in N with nonzero left column, and U_r be the set of matrices in N with nonzero right column. Note that $N = U_{\ell} \cup U_r$. For $A \in U_{\ell}$, write $A = \begin{pmatrix} x & \lambda x \\ y & \lambda y \end{pmatrix}$ (which we can do because the columns of A are linearly dependent). Put $\phi_{\ell}(A) = (x, y, \lambda)$. Similarly, for $A \in U_r$, write $A = \begin{pmatrix} \lambda x & x \\ \lambda y & y \end{pmatrix}$ and put $\phi_r(A) = (x, y, \lambda)$. On $U_{\ell} \cap U_r$, the change of coordinates map is given by $(\phi_r^{-1} \circ \phi_{\ell})(x, y, \lambda) = (\lambda x, \lambda y, \lambda^{-1})$, which is smooth. The inverse $\phi_{\ell}^{-1} \circ \phi_r$ has the same formula and is also smooth. Then $(U_{\ell}, \varphi_{\ell})$ and (U_r, φ_r) define an atlas on N.

- Way 2: For $A \in N$, the kernel of A is a line through the origin. Let U_h be the set of $A \in N$ whose kernel is not horizontal, and U_v be the A with kernel which is not vertical. For $A \in U_h$, let $\theta \in (0, \pi)$ be the angle that ker A makes with the positive x-axis (well defined on U_h). Let $R_\theta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, clockwise rotation by θ . Then $AR_\theta \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0$, so $AR_\theta = \begin{pmatrix} 0 & x \\ 0 & y \end{pmatrix}$ and define $\varphi_h(A) = (x, y, \theta)$. Note $\begin{pmatrix} x \\ y \end{pmatrix} = AR_\theta \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Similarly define $\varphi_v(A)$ on U_v , except $\theta \in (-\pi/2, \pi/2)$. When ker A has positive slope, $\varphi_h(A) = \varphi_v(A)$ so the coordinate change is just the identity. When ker A has negative slope, if $\varphi_h(A) = (x, y, \theta)$ then $\varphi_v(A) = (-x, -y, \theta - \pi)$ since $R_{\theta-\pi} = -R_{\theta}$. Then (U_h, φ_h) and (U_v, φ_v) define an atlas on N.
- Note: Way 1 and way 2 are reminescent of putting stereographic and angular coordinates on a circle, respectively. In both cases, it's easy to see that the set of matrices in Nwith a fixed λ or θ form a two dimensional vector space, so that N is a vector bundle over the circle. N is a trivial bundle over S^1 (show it!) so that N is diffeomorphic to $\mathbb{R}^2 \times S^1$.
- Bonus: Generalize these results to $N \subset M(n)$, the set of $n \times n$ matrices with one dimensional kernel. What dimension is N? Generally, N is a bundle over $\mathbb{R}P^{n-1}$ with projection $\pi: N \to \mathbb{R}P^{n-1}$ given by $\pi(A) = \ker A$. Is this a trivial bundle?

- (3) 6. For a smooth map of manifolds $f: M \to N$, say that f is self-transverse if for all $x, y \in M$ there are neighborhoods $x \in U, y \in V$ so that $f|_U \pitchfork f|_V$.
 - (a) Give an example of M, N and $f: M \to N$ which is not self-transverse.
 - (b) Give an example of M, N and $f: M \to N$ which is self-transverse and not injective.
 - (c) Suppose $f: M \to N$ is a self-transverse immersion. Show $K = \{x \in M | \exists x' \in M \text{ with } f(x) = f(x')\}$ is a regular submanifold of M.

Except that part (c) is false! (*) Give an example to show part (c) is false.

Solution:

- (a) Here are some: $f : \mathbb{R} \to \mathbb{R}^2$ by $f(t) = (\cos t, \sin t)$ is not self-transverse, for example between t = 0 and $t = 2\pi$. Any curve in \mathbb{R}^3 which intersects itself is not self-transverse. If M is the dijoint union of two lines, $f : M \to \mathbb{R}^2$ by f(s) = (s, 0) and $f(t) = (t, t^2)$ is not self-transverse.
- (b) f could map a disjoint union of two lines onto the two axes in \mathbb{R}^2 . Or, let $f(t) = (t \cos(t), t \sin(t))$, a spiral whose t > 0 branch has transverse intersection with its t < 0 branch.
- (c) Let M be the disjoint union of three copies of \mathbb{R}^2 and map M to the three coordinate planes in \mathbb{R}^3 . Then M is self-transverse, but in each copy of \mathbb{R}^2 , K is the union of the coordinate axes, which is not a manifold.
- (*2) 7. Let M be a regular submanifold of N, and let X be a vector field on M. Show there is a vector field \tilde{X} on N with $\tilde{X}|_M = X$.

Solution: For $p \in M$, let (x_1, \ldots, x_n) be single slice coordinates on an open set $U \subset N$ with $p \in U$. So $M \cap U = \{(x_1, \ldots, x_m, 0, \ldots, 0)\} \cap U$. On $M \cap U$, write $X = \sum_{i=1}^m X_i(x_1, \ldots, x_m) \frac{\partial}{\partial x_i}$. Define a vector field on U by

$$\tilde{X}_U(x_1,\ldots,x_n) = \sum_{i=1}^m X_i(x_1,\ldots,x_m) \frac{\partial}{\partial x_i}$$

so that $\tilde{X}_U | M = X$.

Let V = N - M, and define $\tilde{X}_V = 0$. Now V and the collection of U as above are an open cover for M. Take a locally finite refinement of this cover, say $\{W_\alpha\}$. Each W_α is a subset of some U (or V), so each has a vector field $\tilde{X}_\alpha = \tilde{X}_U|_{W_\alpha}$. Let $\{\varphi_\alpha\}$ be a partition of unity subordinate to $\{W_\alpha\}$. Define $\tilde{X} = \sum_\alpha \varphi_\alpha \tilde{X}_\alpha$. Fix $p \in M$, if $p \in W_\alpha$ for some α , then $X_\alpha(p) = X(p)$. Therefore

$$\tilde{X}(p) = \sum_{\alpha, p \in W_{\alpha}} \varphi_{\alpha}(p) \tilde{X}_{\alpha}(p) = \left(\sum_{\alpha, p \in W_{\alpha}} \varphi_{\alpha}(p)\right) X(p) = X(p).$$

(2) 8. Show that the set of closed disks in \mathbb{R}^2 which don't contain the origin is a manifold, and show it is diffeomorphic to $S^1 \times \mathbb{R}^2$.

Solution: We can parameterize the set of closed disks by one chart with domain H = $\{(x, y, z) \in \mathbb{R}^3 | z > 0\}$, by sending $(x, y, z) \in H$ to a disk with center (x, y) and radius z. Those which don't contain the origin form a manifold because they correspond to the open set $V = \{(x, y, z) | x^2 + y^2 > z^2\} \subset H.$

Given $(e^{i\theta}, a, b) \in S^1 \times R^2$, define

$$f(e^{i\theta}, a, b) = ((e^a + e^b)\cos(\theta), (e^a + e^b)\sin(\theta), e^b) = (x, y, z) \in V$$

This map is well defined since adding 2π to θ has no effect on (x, y, z). f is smooth, one-to-one onto V, and $f^{-1}(x, y, z) = (\frac{x+iy}{\sqrt{x^2+y^2}}, \log(\sqrt{x^2+y^2}-z), \log z)$ is also smooth.

(1) 9. Let σ be a curve (embedded 1-manifold) in \mathbb{R}^3 , and let σ_a be the rescaled image of σ under the map $(x, y, z) \to (ax, ay, az)$, for some a > 0. For $p \in \sigma$, compute the curvature of σ_a at ap in terms of a and the curvature of σ at p.

Solution: Let $\sigma(t)$ be a unit speed parameterization with $\sigma(0) = p$. Then $\sigma_a(t) = a\sigma(t/a)$ is a unit speed parameterization of σ_a with $\sigma_a(0) = ap$. Compute the unit tangent vector and it's derivative as:

$$\sigma_a'(t) = \sigma'(t/a) \tag{1}$$

$$T_a(t) = T(t/a) \tag{2}$$

$$\Gamma_a'(t) = \frac{1}{a}T'(t/a) \tag{3}$$

Since both curves are unit speed, the curvature satisfies $\kappa_a(ap) = \frac{1}{a}\kappa(p)$.

(2) 10. Suppose M is an embedded surface in \mathbb{R}^3 , and let N be the rescaled image of M under the map $(x, y, z) \to (ax, ay, az)$, for some a > 0. Compute the Gauss curvature $K_N(ap)$ of N at ap in terms of a and the Gauss curvature $K_M(p)$ of M at p.

Solution: Let $\sigma(t)$ be a unit speed curve in N with $\sigma(0) = ap$. Put $\tau(t) = \frac{1}{a}\sigma(at)$, a curve in *M*. Notice $\tau'(t) = \frac{1}{a}\sigma'(at) \cdot a = \sigma'(at)$, so τ also has unit speed, and $\tau'(0) = \sigma'(0)$. This shows the tangent planes T_pM and $T_{ap}N$ are parallel, so a unit normal vector for M at p is also a unit normal vector for N at ap. Let **n** be a unit normal field on M and also for N, which means $\mathbf{n}(ap) = \mathbf{n}(p)$.

Now compute the shape operator S_N on N in terms of S_M on M:

$$S_N(\sigma'(0)) = (\mathbf{n} \circ \sigma)'(0) = \frac{d}{dt} \mathbf{n} (a\tau(t/a)) \Big|_{t=0}$$
(4)

$$= \mathbf{n}(\tau(t/a))\Big|_{t=0} = (\mathbf{n} \circ \tau)'(0) \cdot \frac{1}{a}$$
(5)

$$= \frac{1}{a} S_M(\tau'(0)) = \frac{1}{a} S_M(\sigma'(0)).$$
(6)

So $S_N = \frac{1}{a}S_M$ and, taking determinants, $K_N(ap) = \frac{1}{a^2}K_M(p)$. Note that this checks with the situation where M is a sphere of radius 1, where $K_M \equiv 1$, and N is a sphere of radius a with $K_N \equiv \frac{1}{a^2}$.

It is also possible to do this by showing that curvature scales by $\frac{1}{a}$ for curves, and since Gauss curvature is the product of the two principal curvatures it must scale by $\frac{1}{a^2}$.

(1*) 11. Let c = c(s) be a unit speed curve in \mathbb{R}^3 , and suppose the Frenet frame T, N, B is defined for all s. Define $f : \mathbb{R}^2 \to \mathbb{R}^3$ by f(s,t) = c(s) + tN(s). Notice that for fixed s, f(s,t) is the normal line to the curve at c(s), and for fixed t, f(s,t) is a curve 'parallel' to c at distance t.

Find all points where f fails to be an immersion.

In the case where c is a planar curve, $f : \mathbb{R}^2 \to \mathbb{R}^2$ and these points are the critical values of f.

Solution: Let κ and τ be the curvature and torsion of c, and recall $N' = -\kappa T + \tau B$.

$$\frac{\partial f}{\partial s} = c' + tN' = T - t\kappa T + t\tau B = (1 - t\kappa)T + t\tau B.$$
(7)

$$\frac{\partial f}{\partial t} = N. \tag{8}$$

f is an immersion except when these two vectors are dependent, which we can check with the cross product:

$$\frac{\partial f}{\partial s} \times \frac{\partial f}{\partial t} = (1 - t\kappa)B - t\tau T.$$

Since B and T are independent, this vanishes when $t\tau = 0$ and $1 - t\kappa = 0$. Since $t\kappa = 1$, neither t nor κ can vanish. Therefore, f is an immersion except when both $\tau(s) = 0$ and $t = \frac{1}{\kappa(s)}$.

Additional remark: Geometrically, $\tau = 0$ means that c is planar to 3rd order at p = c(s). Normally a curve is planar only to 2nd order – see Lee, Exercise 4.7 for a Taylor expansion that shows this. The critical value is then in the plane of the curve, at $\frac{1}{\kappa}$ along the normal line from p. This is the center of curvature for the curve at p, which is the center of a circle (radius $\frac{1}{\kappa}$) that is tangent to the curve at p to order 2. When c is a plane curve, the set of critical values of f is known as the evolute of c. The Wikipedia page for evolute has a pretty animation of f as s varies.

- (2) 12. Let M(2) denote the vector space of 2×2 matrices. Since M(2) is a vector space, the tangent space to M(2) at the identity is naturally identified with M(2). Let $SL(2) \subset M(2)$ be the set of matrices of with determinant 1.
 - (a) Show that SL(2) is a manifold.
 - (b) What is $\dim SL(2)$?
 - (c) * Show that the tangent space at the identity, $T_I SL(2)$, is exactly the space of traceless matrices $\{A \in M(2) | \operatorname{tr}(A) = 0\}$.

Bonus: Do this problem for $n \times n$ matrices instead of 2×2 .

Solution: For $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, det A = ad - bc. Then $T \det = (d, -c, -b, a)$ which has rank 1 unless A = 0. So any value other than 0 is a regular value for det. In particular, 1 is a regular value for det, so SL(2), the set of matrices with determinant 1, is a manifold. Because dim M(2) = 4 and det has rank 1, dim SL(2) = 3.

Let X be a tangent vector to SL(2) at the identity. Represent X by a curve $C(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix} \in SL(2)$, with C(0) = I and C'(0) = X. We know det C(t) = 1, so take the derivative of both sides to get

$$\frac{d}{dt}(a(t)d(t) - b(t)c(t))\Big|_{t=0} = 0,$$
so (9)

$$a'(0)d(0) + a(0)d'(0) - b'(0)c(0) - b(0)c'(0) = 0$$
(10)

Now C(0) = I, so b(0) = c(0) = 0 and a(0) = d(0) = 1, so we get a'(0) + d'(0) = 0, or that $0 = \operatorname{tr} C'(0) = \operatorname{tr} X$.

Although one can generalize the argument above for n > 2 using the combinatorial definition of determinant as a sum over permutations, an easier approach is to write det C(t) as a product of the eigenvalues of C(t).

(*1) 13. Suppose $M \subset \mathbb{R}^3$ is a surface, and assume that for any closed curve $C : S^1 \to M$ there is a continuous unit normal field to M defined along C. Show that M is orientable.

Solution: Assume M is connected. If not, orient each component of M separately. Let $p_0 \in M$, and let N_0 be a unit normal to M at p_0 . For $p \in M$, choose any smooth curve σ joining p_0 with p, and extend N_0 along σ to a unit normal vector N_p . We need to show N_p is well defined. Suppose τ is any other curve joining p_0 with p. Together, σ and τ form a closed curve C, so there is a continuous unit normal field V along C, and by replacing with -V if necessary, we may assume $V = N_0$ at p_0 . Then the extension of N_0 along σ agrees with V at p, and so does the extension of N_0 along τ , so N_p is well defined. Then N is a unit normal field on M and M is orientable. (This solution lacks detail, like how to extend along a curve, what if joining τ and σ isn't smooth, and explicitly showing N is continuous.)

(*2) 14. Let (X_N, Y_N) be sterographic coordinates on $S^2 - (0, 0, 1)$ using the north polar projection. Let (X_S, Y_S) be stereographic coordinates on $S^2 - (0, 0, -1)$ using the south polar projection. Compute $\left[\frac{\partial}{\partial X_N}, \frac{\partial}{\partial X_S}\right]$ and $\left[\frac{\partial}{\partial X_N}, \frac{\partial}{\partial Y_S}\right]$.

Solution: The coordinate change F from north to south is given by $(X_N, Y_N) \to (X_S, Y_S) = \frac{1}{X_N^2 + Y_N^2} (X_N, Y_N)$. Compute

$$TF = \frac{1}{(X_N^2 + Y_N^2)^2} \begin{pmatrix} Y_N^2 - X_N^2 & -2X_N Y_N \\ -2X_N Y_N & X_N^2 - Y_N^2 \end{pmatrix} = \begin{pmatrix} Y_S^2 - X_S^2 & -2X_S Y_S \\ -2X_S Y_S & X_S^2 - Y_S^2 \end{pmatrix}$$

Then

$$\frac{\partial}{\partial X_N} = (Y_S^2 - X_S^2) \frac{\partial}{\partial X_S} - 2X_S Y_S \frac{\partial}{\partial Y_S}$$
(11)

$$\frac{\partial}{\partial Y_N} = -2X_S Y_S \frac{\partial}{\partial X_S} + (X_S^2 - Y_S^2) \frac{\partial}{\partial Y_S}$$
(12)

and so

$$\left[\frac{\partial}{\partial X_N}, \frac{\partial}{\partial X_S}\right] = 2X_S \frac{\partial}{\partial X_S} + 2Y_S \frac{\partial}{\partial Y_S}$$
(13)

$$\left[\frac{\partial}{\partial X_N}, \frac{\partial}{\partial Y_S}\right] = -2Y_S \frac{\partial}{\partial X_S} + 2X_S \frac{\partial}{\partial Y_S}$$
(14)

The nicest expression for this result is in spherical coordinates, where

$$(\theta, \phi) \to (\cos \theta \cos \phi, \sin \theta \cos \phi, \sin \phi) = (x, y, z) \to \frac{\cos \phi}{1 + \sin \phi} (\cos \theta, \sin \theta) = (X_S, Y_S).$$

From this, we find

$$\frac{\partial}{\partial \theta} = -Y_S \frac{\partial}{\partial X_S} + X_S \frac{\partial}{\partial Y_S} \tag{15}$$

$$\cos\phi\frac{\partial}{\partial\phi} = -X_S\frac{\partial}{\partial X_S} - Y_S\frac{\partial}{\partial Y_S}$$
(16)

so that

$$\left[\frac{\partial}{\partial X_N}, \frac{\partial}{\partial X_S}\right] = -2\cos\phi \frac{\partial}{\partial\phi} \tag{17}$$

$$\left[\frac{\partial}{\partial X_N}, \frac{\partial}{\partial Y_S}\right] = 2\frac{\partial}{\partial\theta} \tag{18}$$

(3) 15. The Whitney Embedding Theorem says that any *m*-manifold embeds into \mathbb{R}^{2m} . Give one example of an *m* manifold that does not embed into \mathbb{R}^{2m-1} .

Solution: When m = 1, the circle S^1 does not embed into \mathbb{R} . Suppose $f : S^1 \to \mathbb{R}$ is an embedding. Since S^1 is compact, there is $\theta \in S^1$ such that $f(\theta)$ is the maximum value of f. Since f is an embedding, f is a local diffeomorphism, and therefore takes a neighborhood of θ to a neighborhood of $f(\theta)$, contradicting the maximality of $f(\theta)$. So no such embedding can exists. In fact, there is not even a continuous injective map $S^1 \to \mathbb{R}$.