Questions get two ratings: A number which is relevance to the course material, a measure of how much I expect you to be prepared to do such a problem on the exam. 3 means 'of course you know this information', 1 means 'you probably need to check something in the book for this one'. Given that you know the material, the starred problems are harder.

Reasonable questions from Lee: Exercises 2.66, 2.77. Ch 2 Problems 11,13,16,23. Exercises 3.6-3.9. Ch 3 Problems 1,2,5,7,11. Exercises 4.6,4.16. Equation (4.8). Problem 4.12. Exercise 6.48.

- (3) 1. Show that a connected manifold is path connected.
- (2) 2. Let D be a derivation on $C^{\infty}(M)$. Suppose $f, g \in C^{\infty}(M)$, and that g is never 0. Prove the quotient rule:

$$D\left(\frac{f}{g}\right) = \frac{gDf - fDg}{g^2}$$

(3) 3. Given a sequence of open sets $\{U_i\}_{n=1}^{\infty}$ with $\bar{U}_n \subset U_{n+1}$ for all n, and with $\bigcup_{i=1}^{\infty} U_n = M$. Say that a sequence x_1, x_2, \ldots leaves all U if for any n there is N so that $x_i \notin U_n$ for i > N.

Show that there is a smooth function $f: M \to R$ so that $\lim_{i \to \infty} f(x_i) = +\infty$ for any sequence $\{x_i\}_{i=1}^{\infty}$ which leaves all U.

- (3) 4. Which of these homeomorphisms are diffeomorphisms from $\mathbb{R}^2 \to \mathbb{R}^2$?
 - (a) $(x,y) \to (x^3, y^3)$
 - (b) $(x,y) \to (x^3 + x, y^3 + y)$
 - (c) $(x,y) \to (x\cos(x^2+y^2)-y\sin(x^2+y^2), x\sin(x^2+y^2)+y\cos(x^2+y^2))$
- (**2) 5. Let M(2) denote the space of 2×2 matrices with real entries. Let $N = \{A \in M(2) | A \neq 0, \det(A) = 0\}$. Show that N is a manifold.
 - (3) 6. For a smooth map of manifolds $f: M \to N$, say that f is self-transverse if for all $x, y \in M$ there are neighborhoods $x \in U$, $y \in V$ so that $f|_{U} \cap f|_{V}$.
 - (a) Give an example of M, N and $f: M \to N$ which is not self-transverse.
 - (b) Give an example of M,N and $f:M\to N$ which is self-transverse and not injective.
 - (c) Suppose $f: M \to N$ is a self-transverse immersion. Show $K = \{x \in M | \exists x' \in M \text{ with } f(x) = f(x')\}$ is a regular submanifold of M.

Except that part (c) is false! (*) Give an example to show part (c) is false.

- (*2) 7. Let M be a regular submanifold of N, and let X be a vector field on M. Show there is a vector field \tilde{X} on N with $\tilde{X}|_{M} = X$.
- (2) 8. Show that the set of closed disks in \mathbb{R}^2 which don't contain the origin is a manifold, and show it is diffeomorphic to $S^1 \times \mathbb{R}^2$.
- (1) 9. Let σ be a curve (embedded 1-manifold) in \mathbb{R}^3 , and let σ_a be the rescaled image of σ under the map $(x, y, z) \to (ax, ay, az)$, for some a > 0. For $p \in \sigma$, compute the curvature of σ_a at ap in terms of a and the curvature of σ at p.
- (2) 10. Suppose M is an embedded surface in \mathbb{R}^3 , and let N be the rescaled image of M under the map $(x, y, z) \to (ax, ay, az)$, for some a > 0. Compute the Gauss curvature $K_N(ap)$ of N at ap in terms of a and the Gauss curvature $K_M(p)$ of M at p.

(*1) 11. Let c = c(s) be a unit speed curve in \mathbb{R}^3 , and suppose the Frenet frame T, N, B is defined for all s. Define $f: \mathbb{R}^2 \to \mathbb{R}^3$ by f(s,t) = c(s) + tN(s). Notice that for fixed s, f(s,t) is the normal line to the curve at c(s), and for fixed t, f(s,t) is a curve 'parallel' to c at distance t.

Find all points where f fails to be an immersion.

In the case where c is a planar curve, $f: \mathbb{R}^2 \to \mathbb{R}^2$ and these points are the critical values of f.

- (2) 12. Let M(2) denote the vector space of 2×2 matrices. Since M(2) is a vector space, the tangent space to M(2) at the identity is naturally identified with M(2). Let $SL(2) \subset M(2)$ be the set of matrices of with determinant 1.
 - (a) Show that SL(2) is a manifold.
 - (b) What is $\dim SL(2)$?
 - (c) * Show that the tangent space at the identity, $T_I SL(2)$, is exactly the space of traceless matrices $\{A \in M(2) | \operatorname{tr}(A) = 0\}$.

Bonus: Do this problem for $n \times n$ matrices instead of 2×2 .

- (*1) 13. Suppose $M \subset \mathbb{R}^3$ is a surface, and assume that for any closed curve $C: S^1 \to M$ there is a continuous unit normal field to M defined along C. Show that M is orientable.
- (*2) 14. Let (X_N, Y_N) be sterographic coordinates on $S^2 (0, 0, 1)$ using the north polar projection. Let (X_S, Y_S) be stereographic coordinates on $S^2 - (0, 0, -1)$ using the south polar projection. Compute $\left[\frac{\partial}{\partial X_N}, \frac{\partial}{\partial X_S}\right]$ and $\left[\frac{\partial}{\partial X_N}, \frac{\partial}{\partial Y_S}\right]$.
- (3) 15. The Whitney Embedding Theorem says that any m-manifold embeds into \mathbb{R}^{2m} . Give one example of an m manifold that does not embed into \mathbb{R}^{2m-1} .