Guidelines for Written Preliminary Examinations in Mathematics
Department of Mathematics and Computer Science
Saint Louis University

The purpose of the written PhD preliminary examination is to ensure that candidates for
the doctoral degree have acquired fundamental knowledge in major areas of mathematics.

Candidates must pass written exams in three of the four areas represented by the four
required sequences:

1. Math 511 & 512 (Algebra)

2. Math 521 & 522, 523 or 524 (Analysis).

3. Math 531 & 532 (Topology)

4. Math 641 & 642 (Differential Geometry)
The choice of which three a candidate takes should reflect their anticipated area of

dissertation research.

A student is required to take each exam within ten months of completing the course
sequence (o which it corresponds. However, if the sequence was completed before
entering our PhD program the exam must be taken within ten months of entering the PhD
program. If a student fails the exam, the student must retake the exam within a year.

The preliminary exam in each area is a 3-hour exam. Tt will be offered three times a year:
at the beginning and end of each summer and near the beginning of the spring semester.
A student who wishes to take one or more preliminary exams should make a formal
request to the Director of Graduate Studies. The deadlines for these requests are April
15, July 15 and November 15 respectively. Exams will not be offered at any other times

during the year.
The Director of Graduate Studies will appoint one member of the Graduate Faculty to
prepare and grade each student’s exam and one other member of the Graduate Faculty to

assist in this task. In most cases the faculty member who taught the student part or all the

graduate level sequence will be the faculty member in charge of the exam. Sample
preliminary exams from previous years are available in the Math Department office.

If a student fails any area’s exam twice, the student may not continue in the PhD
program.
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Differential Geometry Qualifying Exam
June, 2010

INSTRUCTIONS: Do any seven of the ten problems.
1. In R?, set

J 5} 0
X = —— =97 — = d 2
myay T Y 23:8:6, w=zdzAdy+vy drNdz

Compute:

(a) [X,Y]

(b) w(X,Y)

(¢} wA (y dy)

(d) d

2. Let M be a smooth 2-dimensional manifold, and let (U, )} and (U, ) be two
smooth charts on M with the same domain. Assume that the change of coor-
dinates 1o ™! is given by the formula 9 o p~1(z,y} = (z* — y?, 2zy) and that
it carries the first quadrant {(z,y) € R?: z,y > 0} onto the upper half-plane
{(u,v) € R*: v > 0}.

(a) If a one—form has the local expression vdu in the chart (U, ), find its
local expression in the chart (U, v).

(b) If a vector field has the local expression % in the chart (U, ), find its
local expression in the chart (U, ).

3. Prove that the composition of two smooth embeddings is a smooth embedding.

4. Let V be a linear connection on a manifold M with non—vanishing torsion T'.
For X, Y in X(M}), define

VY =VxY -T(X)Y).
Show that V* is a linear connection with torsion —7.

5. Explain what a Riemannian metric is, and show that every smooth manifold
admits a Riemannian metric.



6. Let o : S® — S™ denote the antipodal map, and let ¢ : S — RP™ denote the
quotient map. Suppose 7 € {31(S™). Show there exists an w € QE(RP’;) such
that n = ¢*w if and only if a™n = 1.

7. Prove that the product manifold M X N is orientable if and only if both M
and N are orientable.

8. Let M be a manifold with a linear connection V, and let X be a vector field
on M. Given a 1-form a € Q'(M), define Vxa : (M) — C*(M) by

[Vxa)(Z) = X(a(Z)) — a(VxZ) for Z e X(M).

(a) Show that Vxa is a 1-form on M.
(b) Consider Vx : QY(M) - Q'(M) as established in (a). Prove that

Vx(fa)=X(fla+ fVxa

for all f € C°(M) and o € Q1{(M).
9. Define a Lie group G by

z oy
G=< 1 —z | :z,yeR .
0 1

(a) Find a basis for the left invariant vector flelds on G expressed in the x,y
coordinate system.

(b) Find a basis for the left-invariant 1-forms on G expressed in the z,y
coordinate system.

o T R

10. Let G be the Lie group in the previous problem (9).

(a) Identify the Lie algebra of G with a Lie subalgebra g of the Lie algebra
gl(3,R) of 3 x 3 real matrices.

(b) Compute a simple formula for the exponential map exp: g — G.



Ph.D. Exam
Differential Geometry
August 2005

Do any six problems.

Define f : R? — R2? by f(z,y,2) = (2* +¥°,y2). Let (u,v) denote standard coordi-
nates in R2.
a. Calculate f*(udv + vdu).

0
b. Calculate f. (a—y!(lﬁ’—l))'
c. Find a regular value of f.

Suppose f : M — N is a one—to-one immersion. Prove that f is an embedding if M

is compact.

Let X and Y be two smooth vector fields on a smooth manifold M. Suppose that
w(X) = w(Y) for all smooth 1-forms on M. Show that X =Y.

Let T he a tensor field of type (2,0) and let X be a vector field. Define
S(Y,2) = X(T(Y, 2)) - T([X,Y],2) - T}, [X, 2])

for all vector fields Y, Z. Prove that S is a tensor field of type (2,0).

Show that if H; and H, are Lie subgroups of G then H; N Hy is a Lie subgroup of G.
Hint: What should the Lie algebra of this intersection be? Be careful: Hy N Hy may
have countably many distinct components even if H and H, are connected. You may
find it helpful to recall that the exponential map of G carries a neighborhood of 0 in
G diffeomorphically onto a neighborhood of e in G. -

Let M be an oriented compact n—dimensional manifold (without boundar&). Let w
be a p—form and 7 an (n — p — 1)-form on M. Show that

f'dw/\n=(—1)p+1/ w A dn.
M M

Describe the smooth atlas for the tangent bundle T™ of a smooth m-dimensional
manifold M. Calculate the change of charts for this atlas.



DIFFERENTIAL GEOMETRY PRELIMINARY EXAMINATION
August 23, 2002
o Difecf.ioné Do any 5 probléms.-

1. Let M be a differentiable manifold, U an open subset of M, and C a closed subset
of M with C ¢ U. Show that if X is a differentiable vector field on U, then X|¢, the

restriction of X on C, extends to a differentiable vector field X on M. Can X be
extended to a vector field on M? Prove or disprove.

2, Let @ : GL(n) — GL(n) be the smooth mapping given by ®(A) = AT -A for A € GL(n).
(a) Prove that relative to the standard identification T}, (GL(n)) = M(n), the _
differential d®;, : T1 (GL(n)) — Tr,(GL(n)) has the formula d®;, (4) = AT + A.
(b) Show that the map & has constant rank n_(Eé’L‘_H on GL(n).

(c) Show that the orthogonal subgroup O(n) of GL(n) is a smooth, compact submanifold
of the manifold G’L(n) of d_xmensmn — 1)

2
3. On R2 — {0} cOnsider the d‘ifferential 2-form
1
w(z,y,z) = zdy Adz — ydx A dz + zdz A dy).
(z,9,2) (m2+y2+z2)%( y yda Y)

(2) Show that w is a closed 2-form on R? — {0}.
(b) Show that / i*w = 4. (Suggestion: Use polar coordinates on S?)

(c) Show that [wsjqag 0 in H*(R? — {0}).

4. Let D be the Euclidean conne(gnon on R2, and let X and Y be vector ﬁelds on
R? given by X = (z? y)a +9° 5 andY =z —;— — (z3y )az. Compute DxY, and
(DxY)(p) where p = (1,-1). | ‘

5. Let M be a differentiable 2-manifold in R3 and let « : [a,b] — M be a differentialble
curve in M. Show that « is a geodesic in M with respect to the Levi-Civita connection

on M if and only if a”(t) 1 M, ie. o'(t) L Top)(M) for all ¢ € [a,b].

(Continue to the back page)
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6. Consider the Poincaré upper half-plane H? = {(z,y) ¢ R? | y > 0} with the hyperbolic
1
metric g = ;(dx ® dz + dy ® dy).

~ (a) Calculate the matrix representation [9:7]2x2 of the metric g.

(b} Compute the Chnstoffel symbols T% (i, 5,k =.1,2) for the Lev1-01v1ta connection =
on HZ. '

7. Consider the semi-Riemannian manifold (R?, g), where g = dz®@dz+ dy Rdy—dzQdz

is the Minkowski metric on R®. Let M = {(2,y,2) € R®| eyt -2 =-1,2>0}
(2) Show that M is a submanifold of R®.

(b) Show that (M, g|u) is 2 Riemannian manifold, where g|a = i*(g) and i : M — R3
is the inclusion map.



Pa. D. ExaM IN DIFFERENTIAL GEOMETRY
MaAy, 2002

Doing 5 of the 7 problems well is sufficient.

1. Let f : M — N be a smooth map between smooth manifolds. Define
Gr(f) = {(z,y) € M x N |y = f(z)}. Show that Gr(f) is a smooth manifold.

2. Let (M, g) and (N,h) be Riemannian manifolds with differentiable atlases,
respectively, of A and B.
a) Show that the manifold M x N has a differentiable structure coming from A

and B.
b) Show that M x N has a Riemannian metric coming from ¢ and k. (Show all

that needs to be shown.)

3. Derive the Jacobi equation for a variation vector field associated to a fdmily
of geodesics {7 : [a,8] = M | —e <u < e} (M a Riemannian manifold). (Let’s
say that you remember it has something to do with R{U,T)T and VU, but you

can’t recall exactly what it is.)
Let 7' be the velocity vector field, Tz ) = ¥(f), and let U be the variation

vector field Up o) = (3/0u)vu(t).

a) What do you know about V7T'?
b) This being true for all «, what do you know about VyVyTI™?

¢) Derive some equation involving R(U, T)T and VZU.

4. Let M = CU{co} (thought of as the complexes plus one other point). Let
U=Cand V=(C—{0})U{co}. Define ¢:U —R? and ¢: V — R? by

$(¢) = (Re(¢), Im(())
() = (Re(1/¢), Im(1/¢))  for { # o0
(o) = (0,0).
a) Show that {¢,} is an atlas making M a differentiable manifold.

b) Show that complex multiplication by a constant a + bi (taking oo to oo} is a
diffeomorphism on M. _

5. Let the real plane R? be parametrized by the standard rectangular coordinates
(z,y). Let V and W be vector fields given by

3 g, 0 d

V = (my)—ax +_8y and
W= d 4 4y O
T Oz (xy)ﬁy'

Find VyW (standard covariant derivative in the plane) and [V, W].

Typeset by AaS-TEX



6. Let M be a surface of revolution in R3, parametrized by
F: (r,8) — (rcosé, rsing; r).

Let R and © be the corresponding coordinate vector fields. Use the Euclidean
metric and the accompanying Riemannian connection for the following:

a) Find expressions for R and © in terms of the standard R3 coordinates; find
(©,0), (0,R), and (R, R).

b) Show (such as by using part (a) and your knowledge of [©, R])

T
1+ 16

1
VoR =—-0.
T

Vo0 = R and

¢) Derive differential equations for parallel transport of a vector a.lbng an integral
curve of ©, o(8) = F(ro,0) for fixed ro. Do this by cosidering a vector field

Yo = a(6)© + b(0)R at o(6).

7. a) Let A be a (1,1) tensor field (so if X is a vector, then so is A(X)). For any
vector field Z, define £z A as acting on vector fields by

(LzA)(X) =2, A(X)] - A([Z, X]).

i. Prove that for any vector field Z, £z A4 is a (1,1) tensor field.
ii. Prove that the operator B, operating on pairs of vector fields by
B:(Z,X)— (LzA)(X), is not tensorial.

b) Let w be a 1-form. Define dw operating on pairs of vector fields by
(dw)(X,Y) = X(wY) — Y(wX) —w[X,Y].

Prove dw is & tensor field.



PH. D. Exam 1N DIFFERENTIAL GEOMETRY
AvgusTt, 2001

Doing 5 of the 7 problems well is sufficient.

1. Let f : M — N be a smooth map between smooth manifolds. Define
Gr(f) = {(x,y) € M x N |y = f(z)}. Show that Gr(f) is a smooth manifold.

2. Let (M,g) and (N, h) be Riemannian manifolds with differentiable atlases,
respectively, of A and B.
a) Show that the manifold M x N has a differentiable structure coming from .A

and B.
b) Show that M x N has a Riemannian metric coming from g and h. (Show all

that needs to be shown.)

3. Derive the Jacobi equation for a variation vector field associated to a family
of geodesics {7V : [a,b] — M | —e < u < ¢} (M a Riemannian manifold). (Let’s
say that you remember it bas something to do with R(U,T)T and V.U, but you
can’t recall exactly what it is.)

Let T be the velocity vector field, T ) = 9u(t), and let U be the variation
vector field Uy .y = (3/0u)7,.(t).

a) What do. you know about V477

b) This being true for all u, what do you know about VyVrT?

¢) Derive some equation involving R(U, T)T and V2U.

4. Let M = CU {oo} (thought of as the complexes plus one other point). Let
U=Cand V= (C—{0})U{co}. Define ¢:U —RZand 1y: V —R? by

#(¢) = (Re((), Im(())
P(¢) = (Re(1/(),Im(1/¢)) for { # o0
P(oo) =(0,0)
a) Show that {¢,} is an atlas making M a differentiable manifold.
b) Show that complex multiplication by a constant a + bi (taking oo to co) is a
diffeomorphisin on M.

5. Let the real plane R? be parametrized by the standard rectangular coordinates
(z,y). Let V and W be vector fields given by

g 0
V= ()5 + 5, ad

Oy
. a 44£
Wm.@‘a: +(:cy)6y,

Find Vv W (standard covariant derivative in the plane) and [V, W1].



6. Let M be a surface of revolution in R?, parametrized by
F: (r,0) — (rcos@, rsind, r1).

Let R and © be the corresponding coordinate vector fields. Use the Euclidean
metric and the accompanying Riemannian connection for the following:

a) Find expressions for R and © and in terms of the standard R?® coordinates;
find (©,0), (O, R), and (R, R).
b) Show (such as by using part {a) and your knowledge of [0, R]}

.
14 16x6

VoR= 0.
r

Ve = R and

¢) Derive differential equations for parallel transport of a vector along an integral
curve of O, o(f) = F(ry,0) for fixed ro. Do this by cosidering a vector field
Y, = a(@)O + b(0)R at o(0).

7. a) Let A be a (1,1) tensor field (so if X is a vector, then so is A(X)). For any
vector field Z, define £z A as acting on vector fields by

(LzA)(X) = [2, A(X)] - A([Z, X]).

i. Prove that for any vector field Z, Lz A is a (1,1) tensor field.
ii. Prove that the operator B, operating on pairs of vector fields by
B:(Z,X)— (LzA)(X), is not tensorial.

b) Let w be a 1-form. Define dw operating on pairs of vector fields by
(dw)(X,)Y) =X(WwY) - Y(wX) —w[X, Y]

Prove dw is a tensor field.



Ph.D. Exam
~ Differential Geometry -
~ August 2001

- Do any five problems. -

1. Let M be an oriented compact n—dimensional manifold (without boundary). Let w
be a p—form and 7 an {(n — p — 1)—form on M. Show that

fdcaAn:(—l)p+1/ w A dn.
M M

2. Let w = M(z,y)dz + N{z,y)dy be a one form on R2. Show there exists a smooth
function F' on R? such that dF = w if and only if dw =0 .

3. What is the meaning (definition) of the Lie derivative LxT where X is a vector field
and T is a (p, ¢)-tensor field? '

4. Let f : M — N be a C* map. Show that the graph of f
F={(zy) e MxN: fz) =y}

is a smooth, closed embedded submanifold of M x N.

5. Consider the Lie group

G={[g {] :a:,yER,w;:éO}.

Regard (z,¥) as a globally defined local coordinate system on G.
i) Exhibit the Lie Algebra G of G as a Lie sub-algebra of GL(2,R?).
ii) Find the local coordinate expressions for a basis of the left invariant vector fields

7 on G.

6. Prove that 423 + 22y + z = 0 is a smooth sarface M in R3, and find a basis B for
T(0,1,00M as a vector subspace of Tg,10)R® = R®. Let f : M — R? be defined by
f(z,y,2) = (y,2). Compute the matrix of f. : Tjo,1,00M — T(o,0)R? relative to the
basis B for T(,1,0)M and the basis {£Z, &} for Tig,)R?. | |

7. Describe the smooth atlas for the tangent bundle TM of a smooth m—dimensional
manifold M. Calculate the change of charts for this atlas.



Ph.D. Exam
Differential Geometry
August 2000

Do any five problems.

Let M be an oriented compact n—dimensional manifold (without boundary). Let w
be a p—form and 7 an (n— p — 1)~form on M. Show that

fdw/\nm(—l)”“/ w A dn).
M M

Let w = M(z,y)dz + N(z,y)dy be a one form on R?. Show there exists a smooth
function F on R? such that dF = w if and only if dw =0 .

What is the meaning (definition) of the Lie derivative LxT where X is a vector field
and T is a (p, ¢)—tensor field?

Let f: M — N be a C* map. Show that the graph of f

I'={(z,y) e M xN: f(z) =y}

is a smooth, closed embedded submanifold of M x N.
Consider the Lie group

az{[g i{]:x,yeR,z#O}.

Regard (z,y) as a globally defined local coordinate system on G.

i) Exhibit the Lie Algebra G of G as a Lie sub-algebra of GL£(2, R?).

i) Find the local coordinate expressions for a basis of the left invariant vector fields

on G.

Prove that 423 + 2zy + z = 0 is a smooth surface M in R?, and find a basis B for
T(0,1,00M as a vector subspace of ‘_'.L“(O,I’O)R:5 ~ R3. Let f: M — R? be defined by
f(x,y,2) = (y,2). Compute the matrix of fu : T(o,1,00 M — T(O,O)Rg relative to the
basis B for Tg,1,0)M and the basis {-%, 3?;} for T(O,O)RQ.
Describe the smooth atlas for the tangent bundle TM of a smooth m—dimensional
manifold M. Calculate the change of charts for this atlas.



PH. D. ExaM IN DIFFERENTIAL GEOMETRY
1996

1. Let the real plane R? be parametrized by the standard rectangular coordinates
(z,y). Let V and W be vector fields given by

a i)
= (22y)— —
V = (z*y) 5 + 5 and

_2 + (coszsin )2-
= % 03 y@y'

Find Vy'W and [V, W].

9. Let M and N be manifolds with differentiable atlases, respectively, of A and
B, and with Riemannian metrics, respectively, of g and .
a) Show that the manifold M x N has a differentiable structure coming from A

and B.
b) Show that M x N has a Riemannian metric coming from g and h. (Show all

that needs to be shown.) :
¢) Make a reasonable guess about how the covariant derivative from the product

metric works (you needn’t prove it), and use that to show a curve in MxNisa
geodesic if and only if each of its projections is a geodesic.

3. Let o : (a,b) = M be a curve in a pseudo-Riemannian manifold.

a) If o is reparametrized to & : (&5) — M, how is V;5 related to V67

b} Show that if for some scalar function A: (a,b) = R, V56 = Ac, then there is
a reparametrization & of ¢ which is a geodesic.

4. For each u, let o, be a a unit-speed geodesic. Let T = 6, and U = 3%0,‘.
(More precisely: For a(t,u) = oy(t), T = a.d and U= a,Z.) Derive the Jacobi

equation:
VoVeU + RU,T)T =0

5. Consider the unit 2-sphere in R3, parametrized by
F: (8,¢) — (cosdcos ¢, sinfcos @, sin ).

Let © and @ be the corresponding coordinate vector fields.

a) Find expressions for © and & in terms of the standard R3 coordinates; find
(6,0), (8,9), and (&, ®).

b) Use coordinate expressions to show Ve® = (sin¢ cos§)®. (Recall that
VxY = n(DxY), where D is the covariant derivative in R? and  is projection to
the surface, 7(X) = X — {X, N}N, for N the unit normal vector to the surface.)

¢) Use your knowledge of (8,6), (8,8), (#,®), and [8, 9] to show Ve& =
(—tan¢)@. (Hint: Look at (Ve®,©) and (Ve¥, 8).)

d) Use geometric insight to show V& =0.

e) Use b) and c) to derive differential equations for parallel transport of a vector
along an integral curve of ©: o(t) = F(t,¢0). What is the parallel transport of &
once around the sphere along such a curve at a given ¢g?



DIFFERENTIAL GEOMETRY PRELIMINARY EXAMINATION
June 17, 1996

* Direction: Do any 5 problems.

1. Let M = C u {eo} ( C is the set of compiex numbers). Set U=C and

V=M~ {0}, and define ¢ :U — C(=R%} by o(z)=z and y:V - C(=R?)

by wi2)=1z if z#0 and y(z})=0 if z=o.

(a) Show that {(U,9), (V.y)} defines a smooth atlas on M.

(b) Let p(z) and q(z) be a pair of relatively prime polynomials with
complex coefficients. Define f: M - M by f(z) = p(2)/a(z) if z#e
and q(z) #0, f(z) = = if q(z) =0, and f(z) = lim p(o)/q(e) f z="c.
Show that f is a smooth mapping.

(c) Show that M is diffeomorphic to the 2-sphere S2 = {(xy.z)| x* +y2

+ 22 = 1}.

2. Let U be an open subset of Rk and f:U - R™K a smooth mapping.
Show that the graph of f, Gi = {(x.f(x)) € R"| x e U}, is a smooth
submanifold of RM of dimension k.

3. Let @ : Gl(n) - GI(n) be the smooth mapping given by &(Y) = YTY,

(a) prove that relative to the standard identification T (GI(n)) = M(n),
the differential d®, : T(GKn)) — T(Gin)) has the formula d®(A) =
AT 4+ A,

(b) Show that the map & has constant rank n(n+1)/2.

(c) Show that the orthogonal group O(n) < Gl(n} is a smooth, compact
submanifold of dimension n(n-1)/2.

(d) Show that the vector subspace T{(O(n)) < M{n) is the space of skew
symmetric matrices.

4. Let U be the usual or canonical C~ structure on R, ®: R —»> R the
homeomorphism ®(x) = x3, and Ug = { (&71(Uy), 0,°®) | (U,,9,) € U} the
C> structure on R induced by &. Show that the identity map id : (R,Ug)
- (R,U) is not a diffeomorphism.



5. Let M be a smocth manifold, C SU < M where Cis clsed and U is open
in M, and f: U —- R a smooth function.
(a) Show that f|c can be extended to a smooth function on M.
(b) Can f be extended to a smooth function on M? Prove or disprove.

6. Let M be a smooth manifold. Prove that a k-plane bundle over M,
= : E— M, is a trivial bundle if and only if there are (smooth) sections

Sqy reres , S € T(E) such that {s{(x), ..... , SK(X)} is a basis of E, =n"1(x)
V xe M.

7. Given the 1-form o = x?y dx + xdy on R2
(a) Evaluate the line integral | o , where s is the (smooth) radial path
in R2 from (0,0) to (1,1).
(b) Evaluate the line integral @, where s is the piecewise smooth

path in R2? consisting of line segments from (0,0) to (1,0) and
7 (1,0) to (1,1). :
(c) Determine whether ® has the path independent line integrals.

8. Consider the canonical projection = : 8" — RP" and the antipodal map
o:8"— 8" with o(X)=-x. Let ©® be a 1-form on S" . Show that
there exists a 1-form ®, on RP" such that o = xn"(w,) if ana only if

o (o) = o.



Differential G . nensive Examinali
December 13, 1994
Direction: Do all seven problems. Each problem is wosth 20 points.

1. Let X be a topological space and G a topological group acting continucusly on X.
Show that V x £ X, Gy is a closed subgroup of G.

2. Let M be a C=manifold, K a compact subset of M, and U an open subset of M
containing K. Prove that there is a C* functica f : M~ [0,1] such that £ (K)=1

and supp(f)cU.

3. (a) Let Mand N be C* manifolds. Show thatVnyeN, themapi:M—>MXN
given by i (m) = (m,n) is an imbedding.

(b) Show that the function F:R — R2 given by F(t) = (2cos(t - m/2), sin 2(t - 7©/2) )
is an immersion but not an imbedding.

4. (2) Show that if M is a C= manifold, then V X, Y & % (M) and V £, g & C=(M),
[fX, gY]=fgXY]I+fXg Y-g(¥DX.

(b) Given the vector fields X = y 9/0x - x d/dy and Y =z /0y - y 0/dz on R3 (with
coordinates X, y, z), compute the components of [X,Y] .

5. Let f:R3 — R be given by f(x,y,z) =xy +xz+yz-1.
(a) Show that f ~1(0) is a closed, regular submanifold of R3 .
(b) Compute £*(dt) .

6. Let M={ (x,y,2) eR3I x4+ y*+z¢ =1}
(a) Give an explicit basis for Tp(M) atp=1(x,y,2) with z>0.

(b) Show that n = ( x3/(1- x* -y%)34, y3/(1- x* -y%34, 1) is a normal vector to
T,(M) at pin ().

(c) Define x : Ty(R3) — Tp(M) to be the orthogonal projection along the vector n in
(b). Express & (1,0,0) in terms of the basis for Tp(M) in (a) .

7. Show thatif M; and M are Riemannian manifolds with Riemannian metricgs @
and @, resp., and F : M — Mj is an isometry w.r.t. the Reimannian metrics @,
and ®,, then F is an isometry of the manifolds M and M w.r.t. the induced
metrics do; and dg, on Mj and M3 respectively.



994

8. Let G be a Lie group and let H be an algebraic sugbroup of G. Prove thatif His
normal, then H is normal. g 7o H w

~

<9. (a) Let M be a smooth manifold. Let pe M. Define TP(M), the tangent space of M at p.
(b) Let M and N be smooth manifolds and let F:M—N be smooth. Define
F*P:TP(M)—)TF@)(IVI), the derivative of F at p.

10. Let £:C—C be a complex analytic (holomorphic) function. Let zgeC = RZ. Prove that f

. . . . f(@)-1(zy
is a submersion at z; if and only if £'(zg) # 0. (Here, f(z) =lm __.z..._e C)
7y L4

[Hint: Recall that if f = u+iv, then £’ = du/dx+idv/dx and du/ox = dv/dy,du/dy = -0v/ox.]

Conclude that if f is a polynomial with complex coefficients, then f is a submersion
except at finitely many points.
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MATH 641 FINAL EXAM

1) TENSORS OR No

We have a Riemannian manifold M (with Levi-Civita covariant derivative V).
We also have two fixed vector fields on M, Z and W, a fixed covector field 4,
and a fixed real-valued function ¢ on M. We are going to define an operation
A: X(M) - X(M). Your job is to determine whether or not A is tensorial, for
each of these possible definitions of A:

a) A(X)=[X,Z]eW

b} A(X)=(VxZ)@W

c) A(X)=(Vz X)W

d) A(X) =(Xa)W

e) A(X) = (X)W

f) AX) = (X)X

g) AX)=(VxZ2)@X

h) A(X) =IX[W  (1X]= (X, X)'/?)

o

2) LiE DERIVATIVE OF COVECTORS

For any vector field V, Ly : X(M) — X(M) is defined by Lv(X) = [V, X] (this
is Lie derivative in direction V). We can extend to Lie derivative of covector fields
by this definition for the covector field o:

Ly(a) : X — V{a(X)) — oLy (X))

a) Show that the definition above yields that Ly () really is a covector.
b) Show that for any ¢ € F(M), Ly (dp) = d(V).



2 MATH 641 FINAL EXAM

3) CONNECTION, GEODESICS, AND CURVATURE IN PRODUCT MANIFOLDS

We have two Riemannian ‘manifolds, .(M1,¢') and (Ma,g?). Let (M, g) bé the
metric product,’i.e., M = M; x M, and g = gt + 32, where 7; : M — M; is
. projection. ' ' - ' : o
Perhaps more simply: For X € TpM = Ty, My x Tp, My (where p = (p1,p2)),
let X7 and X2 be the respective components of X in T, My and T, Ms, so X =
(X1, X2) (e, p =mpand X; = m;xX). Then with g = (,)and gi ={, )}

(X: Y) = (Xl,lflh + (XZ: },'2)2

Let V be the Levi-Civita connection for g in M and V; the Levi-Civita connection
for g; in M;. _
a) Show that VxY = (V4 Y1,Vi ¥3).
b) Show that a curve ¢ = (cy, ¢2) in M is a geodesic iff ¢; and ¢, are geodesics.
(c; =m;oc) | |
c) Find a formula for the Riemann curvature tensor B in M in terms of the
corresponding tensors R* in M;.

' 4) POINCARE HALFPLANE dx©d L ly
, 1 b
Let M = {(z,y) € R?|y > 0} and let g = y~%(dz? + dy?). Show that the
sectional curvature in M obeys K = —1.
(N.B.: dz? = dz ® dx)
(Hint: I found it easier to work with g = A(y)%(dz? + dy?) and only afterwards

put in A(y) =y~ 1)



