
Math 642 Week 9 Exercises

• (Boothby pg. 205 #1) For V a vector space with dimV > 1, show T r(V ) =
∧r(V )⊕

∑r(V )
when r = 2 but not for r > 2.

Solution: Let S and A be the symmetrization and antisymmetrization operators. When
r ≥ 2, S vanishes on

∧r(V ) and A vanishes on
∑r(V ). If φ ∈ T r(V ) is the sum of a

symmetric α and antisymmetric β, then α, β are uniquely given by S(φ) = S(α)+S(β) =
α and A(φ) = A(α) +A(β) = β. When r = 2:

S(φ)(v, w) +A(φ)(v, w) =
1

2
(φ(v, w) + φ(w, v)) +

1

2
(φ(v, w)− φ(w, v)) = φ(v, w)

which shows T 2(V ) =
∧2(V )⊕

∑2(V )

Assuming dimV = n > 1, there are ω, ν ∈ V ∗ which are linearly independent. Put

φ = ν ⊗ ω ⊗ ω ⊗ · · · ⊗ ω.

Then A(φ) = 0 but S(φ) 6= φ since φ is not symmetric. This φ is not a sum of a symmetric
and asymmetric tensor.

Another way to see T r(V ) 6=
∧r(V )⊕

∑r(V ) when r > 2 is to count dimensions: First,
dim T r(V ) = nr. We showed dim

∧r(V ) =
(
n
r

)
. A good combinatorics exercise is to show

dim
∑r(V ) =

(
n+r−1

r

)
, and then show that

(
n
r

)
+
(
n+r−1

r

)
< nr when r > 2 and n > 1.

• (Boothby pg. 214 #6) Definition and basic properties of interior product. The hard part is
the product rule. One way to prove this is ‘by force’, which Lee does in Proposition 8.13.
You should prove it in the special cases when r = 1 and s = 1, 2, 3. Then, either prove (or
accept) that it’s true for r = 1 and all s > 1 - it should be clear at this point, and only the
notation makes it hard. Then you can use induction on r, proving that if the product rule
holds for r and all s, then it holds for r + 1 and all s.

Extending to tensor fields on a manifold is trivial. Just replace v’s with X’s. It’s not worth
re-writing everything.

Solution: First, see ι(v)ϕ ∈
∧r−1(V ).

(ι(v)ϕ)(v1, . . . , vi, . . . , vj , . . . , vr−1) = ϕ(v, v1, . . . , vi, . . . , vj , . . . , vr−1)

= −ϕ(v, v1, . . . , vj , . . . , vi, . . . , vr−1) = −(ι(v)ϕ)(v1, . . . , vj , . . . , vi, . . . , vr−1)

Next, show ι(v) is linear:

ι(v)(ϕ+ cψ)(v1, . . . , vr−1) = (ϕ+ cψ)(v, v1, . . . , vr−1) =

ϕ(v, v1, . . . , vr−1) + cψ(v, v1, . . . , vr−1) = (ι(v)ϕ+ cι(v)ψ)(v1, . . . , vr−1)

Finally, the product rule. Note that for ϕ ∈
∧1(V ), ι(v)ϕ is the scalar ϕ(v).



When r = 1, we have:

ι(v)(ϕ ∧ ψ)(w1, . . . , ws) = (ϕ ∧ ψ)(v, w1, . . . , ws)

= ϕ(v)ψ(w1, . . . , ws)−
s∑

i=1

ϕ(wi)ψ(w1,
ith spot
. . . v . . ., ws)

= ϕ(v)ψ(w1, . . . , ws) +

s∑
i=1

(−1)iϕ(wi)ψ(v, w1, . . . ŵi . . . , ws)

= ϕ(v)ψ(w1, . . . , ws) +

s∑
i=1

(−1)iϕ(wi)ι(v)ψ(w1, . . . ŵi . . . , ws)

= (ι(v)ϕ ∧ ψ − ϕ ∧ ι(v)ψ)(w1, . . . , ws)

where we divide up the permutations of (v, w1, . . . , ws) into two types, those which fix v
and those which first exchange v with wi.

Now we prove the general product rule by induction on r. The idea is to change a wedge
of r + 1 and s forms into a wedge of r and s+ 1 forms.

Suppose the product rule holds for a particular r and for all s. The case r = 1 is done
above. Let φ ∈

∧r+1(V ). Then φ is a sum of terms of the form θ ∧ ρ, where θ is a 1-form
and ρ is an r form. By linearity, we only need to prove the product rule for one such
term. For ψ ∈

∧s(V ), we have:

ι(v)(φ ∧ ψ) = ι(v)((θ ∧ ρ) ∧ ψ) = ι(v)(θ ∧ (ρ ∧ ψ))

= ι(v)θ ∧ (ρ ∧ ψ)− θ ∧ ι(v)(ρ ∧ ψ)

= ι(v)θ ∧ (ρ ∧ ψ)− θ ∧ [ι(v)ρ ∧ ψ + (−1)rρ ∧ ι(v)ψ)]

= [ι(v)θ ∧ ρ− θ ∧ ι(v)ρ] ∧ ψ + (−1)r+1θ ∧ ρ ∧ ι(v)ψ

= ι(v)φ ∧ ψ + (−1)r+1φ ∧ ι(v)ψ

• (Lee Ch 8 # 3) A criterion for functions to be coordinate charts. You previously did something
like this with Lee’s Chapter 2 #17.

Solution: Let x1, . . . , xm be coordinates in a neighborhood of p, so ∂
∂x1

, . . . , ∂
∂xm

is a basis

for Tp(M), and so df1∧· · ·∧dfn( ∂
∂x1

, . . . , ∂
∂xn

) is nonzero. Setting J =
(
dfi(

∂
∂xj

)
)

=
(

∂fi
∂xj

)
,

det J = df1 ∧ · · · ∧ dfn(
∂

∂x1
, . . . ,

∂

∂xn
) 6= 0.

Since J is nonsingular, the inverse function theorem gives a neighborhood V of p where
f = (f1, . . . , fn) is a diffeomorphism to a subset of Rn, i.e. a coordinate chart.

• Give a natural geometric criterion for a basis u,v of R2 to be positively oriented.



Solution: Write u = |u|(cos θ, sin θ) and v = |v|(cosφ, sinφ) for θ, φ ∈ [0, 2π]. The basis
u,v is positively oriented if det(u|v) > 0. Now

det(u|v) = |u||v| cos θ sinφ− sin θ cosφ = |u||v| sin(φ− θ).

Now φ − θ is the angle between u and v measured clockwise from u to v. It’s sine will
be positive when it is an acute angle. In other words, a basis in R2 is positively oriented
if the clockwise angle from its first vector to its second vector is acute.

• For which n is RPn orientable?

Solution: Let Ω be the orientation of Sn as a submanifold of Rn+1 given by

Ωp(X1, . . . , Xn) = det(p|X1| · · · |Xn)

or equivalently

Ω =
n∑

i=1

xidx1 ∧ · · · ˆdxi · · · ∧ dxn

The antipodal map a(x1, . . . , xn) = (−x1, . . . ,−xn) acts on Ω as

(a∗Ω)p(X1, . . . , Xn) = Ω−p(−X1, . . . ,−Xn) = det(−p| −X1| · · · | −Xn)

= (−1)n+1Ωp(X1, . . . , Xn)

So a∗Ω = Ω when n is odd, and a∗Ω = −Ω when n is even.

When n is odd, RPn is orientable. The orientation is given by pushing Ω down to RPn.
More precisely, if π : Sn → RPn, define

(π∗Ω)p(X1, . . . , Xn) = Ωp̃(X̃1, . . . , X̃n)

for either p̃ with π(p̃) = p, and Tπ(X̃i) = Xi ∈ TpRPn. This is well defined since the
antipodal map preserves Ω.

When n is even, RPn is not orientable. Suppose it is. Then there is an orientation given
by a nonvanishing Φ ∈

∧n(RPn). Then Φ̃ = π∗Φ is a non-vanishing n-form on Sn, and so
Φ̃p = λ(p)Ωp for some non-vanishing function λ ∈ C∞(Sn). Apply the antipodal map to
this, so Φ̃p = λ(−p)(−Ωp), so that λ(p) = −λ(−p), which is impossible for a nonvanishing
continuous function on the connected manifold Sn.


