
Math 642 Week 6 Exercises

1. Suppose M is a manifold and g, h are both Riemannian metrics on M . Show that for any
p ∈ M , there is a neighborhood U of p and scalars λ, µ > 0 so that for any x ∈ U and any
v ∈ TxM , we have:

λg(v, v) ≤ h(v, v) ≤ µg(v, v).

Solution: Let V be any neighborhood of p, and let x ∈ V . The set Sx = {u ∈ TxM |g(u, u)}
is a sphere in the inner product space (TxM, g), so Sx is compact. Then the continuous
function h(u, u) for u ∈ Sx has both a maximum µx and minimum λx. Now for any nonzero
v ∈ TxM , put u = v/

√
g(v, v). Then

λx ≤ h(u, u) ≤ µx

so λx ≤
h(v, v)

g(v, v)
≤ µx

so λxg(v, v) ≤ h(v, v) ≤ µxg(v, v).

Now this holds for any v ∈ TxM . The values λx, µx depend continuously on x. So, let U be
a neighborhood of p with Ū ⊂ V and Ū compact. Let λ = minx∈Ū λx and µ = maxx ∈ Ūµx.
Then for any x ∈ U and any v ∈ TxM ,

λg(v, v) ≤ λxg(v, v) ≤ h(v, v) ≤ µxg(v, v) ≤ µg(v, v).

2. Let ω be an arbitrary smooth 1-form on M . For vector fields X,Y ∈ X(M), define Ω(X,Y ) =
ω([X,Y ]). Show that Ω is bilinear and anti-symmetric. Is Ω a tensor?

Solution:

Ω(X,Y ) = ω([X,Y ]) = ω(−[Y,X]) = −ω([Y,X]) = −Ω(Y,X)

so that Ω is antisymmetric. For X1, X2 ∈ X(M) and c a scalar,

Ω(cX1 +X2, Y ) = ω([cX1 +X2, Y ]) = ω(cX1Y +X2Y − Y cX1 − Y X2) =

= ω(c[X1, Y ] + [X2, Y ]) = cω([X1, Y ]) + ω([X2, Y ]) =

= cΩ(X1, Y ) + Ω(X2, Y ).

This shows linearity in the first argument, and antisymmetry implies linearity in the second
argument. So Ω is bilinear.

However, Ω is not generally linear over C∞(M). If f ∈ C∞(M), then

Ω(fX, Y ) = ω([fX, Y ]) = ω(fXY − Y (fX)) = ω(fXY − (Y f)X − fY X)

= ω(f [X,Y ]− (Y f)X) = fΩ(X,Y )− (Y f)ω(X).

If we choose X so ω(X) 6= 0, and choose Y and f so Y f 6= 0, then Ω(fX, Y ) 6= fΩ(X,Y ),
and Ω is not a tensor.



3. Given intervals I, J , and unit speed curves f : I → M , g : J → M , let Γ ⊂ I × J be the set
of (s, t) with f(s) = g(t). Because g−1 ◦ f is a diffeomorphism on its domain, Γ consists of
line segments of slope ±1 which must extend to the boundary of I × J , and at most one of
these segments can end on a given edge of the rectangle I × J . Explain why Γ has at most two
components, and draw all combinatorial possibilities for Γ.

Solution: Each segment has two ends, and each end needs to hit one edge of the rectangle.
Since the rectangle has four edges, there can be at most two segments. There are ten ways
this can happen:

One might consider cases where the segments hit precisely at the corners of the rectangle.
Combinatorically these are different, but are just special cases of the ten above when it
comes to the proof that uses this list.


