- Boothby pg $187 \#1$ is a straightforward warm-up problem with basic linear algebra facts about bilinear forms.
- Boothby pg $187 \#2$: Show there is a correspondence:

fields of bilinear forms on $M \longleftrightarrow C^{\infty}(M)$ -bilinear mappings $\mathfrak{X}(M) \times \mathfrak{X}(M) \to C^{\infty}(M)$

Hints: The \rightarrow direction is easy. In the other direction, you have a bilinear mapping of vector fields on M, and given $v, w \in T_p(M)$, you need to define $\Phi_p(v, w)$. Do this by extending v, w to vector fields, and then proving the definition is independent of the extensions chosen. The key step is to use local coordinates near p . If two extensions agree at p , then their coefficients in coordinates agree at p . Applying a cutoff function, you can extend the coefficients to all of M and pull them out of Φ .

Another big hint is that this is the specific case of Lee's Proposition 7.32, with $r = 0$ and $s=2.$

- Boothby pg $192 \# 3$ (definition of the gradient)
- 1. Given $c(u) = (r(u), z(u))$ a smooth curve in the x-z plane with $r(u) \neq 0$, let $M \subset \mathbb{R}^3$ be the surface of revolution of c around the z-axis. Find the metric g on M as a submanifold of \mathbb{R}^3 .
	- Boothby pg 192 $\#$ 2 (the metric on the torus in \mathbb{R}^3) You might apply the previous problem.