
Math 642 Week 4 Exercises

• Boothby pg 187 #1 is a straightforward warm-up problem with basic linear algebra facts
about bilinear forms.

Solution: For (iv), write:

Φ(v, w) =
1

2
(Φ(v, w) + Φ(w, v)) +

1

2
(Φ(v, w)− Φ(w, v))

For (v), choose a basis e1, . . . , en and put Φ(ei, ej) = Aij . Since Aji = Φ(ej , ei) =
−Φ(ei, ej) = −Aij , the matrix A is skew symmetric. Then det(A) = det(−At) =
(−1)n det(A). When n is odd, we have 2 det(A) = 0 so A must be singular, and Φ
does not have rank n.

• Boothby pg 187 #2: Show there is a correspondence:

fields of bilinear forms on M ←→ C∞(M)-bilinear mappings X(M)× X(M)→ C∞(M)

Hints: The → direction is easy. In the other direction, you have a bilinear mapping of vector
fields on M , and given v, w ∈ Tp(M), you need to define Φp(v, w). Do this by extending v, w
to vector fields, and then proving the definition is independent of the extensions chosen. The
key step is to use local coordinates near p. If two extensions agree at p, then their coefficients
in coordinates agree at p. Applying a cutoff function, you can extend the coefficients to all
of M and pull them out of Φ.

Another big hint is that this is the specific case of Lee’s Proposition 7.32, with r = 0 and
s = 2.

Solution:

→: Given a bilinear form Ψ on M and X,Y ∈ X(M), define Φ(X,Y ) ∈ C∞(M) by
Φ(X,Y )(p) = Ψp(Xp, Yp). This is bilinear over C∞(M): if f ∈ C∞(M), then

Φ(fX, Y )(p) = Ψp(f(p)Xp, Yp) = f(p)Ψp(Xp, Yp) = f(p)Φ(X,Y )(p),

and similarly Φ(X, fY ) = fΦ(X,Y ).

←: Let Φ be a C∞(M)-bilinear mapping X(M) × X(M) → C∞(M). Fix p ∈ M . For
v, w ∈ Tp(M), let V,W ∈ X(M) be C∞-vector fields on M with Vp = v, Wp = w (we’ve
proved these exist using cutoff functions). Define Ψp(v, w) = Φ(V,W )(p). The difficulty
here is to show that this definition is independent of the extending vector fields.

So, let V̄ , W̄ be any other vector fields with V̄p = v and W̄p = w. We will show that
Φ(X,Y )(p) = 0 whenever Xp = 0 or Yp = 0, so that

Φ(V,W )(p)− Φ(V̄ , W̄ )(p) = Φ(V − V̄ ,W )(p) + Φ(V̄ ,W )(p) (1)

− Φ(V̄ ,W )(p) + Φ(V̄ ,W − W̄ )(p) (2)

= Φ(V − V̄ ,W )(p) + Φ(V̄ ,W − W̄ )(p) (3)

= Φ(X,W )(p) + Φ(V̄ , Y ) = 0. (4)



with X = V − V̄ , Y = W − W̄ .

This leaves the clam that Φ(X,Y )(p) = 0 when Xp = 0 or Yp = 0. The two cases are
similar, so suppose Xp = 0. Choose coordinates x1, . . . xn on a neighborhood U of p, and
write X =

∑
i ξi

∂
∂xi

, with each ξi(p) = 0. Let β be a smooth cutoff function which is 1 at

p and vanishes outside of U . Then β ∂
∂xi

are vector fields on all of M , and βξi is a smooth
function on all of M . So (using C∞(M) bilinearity of Φ):

β2Φ(X,Y ) = Φ(
∑
i

βξiβ
∂

∂xi
, Y ) =

∑
i

βξiΦ(β
∂

∂xi
, Y )

Evaluting at p, the left hand side is Φ(X,Y )(p) and the right hand side is 0.

• Boothby pg 192 # 3 (definition of the gradient)

Solution: Let 〈·, ·〉 denote the Riemannian metric on M . Given X ∈ X(M), define
σX(Yp) = 〈Xp, Yp〉 for Yp ∈ Tp(M). If X ′ ∈ X(M) and c ∈ R,

σX+cX′(Yp) =
〈
Xp + cX ′

p, Yp
〉

= 〈Xp, Yp〉+ c
〈
X ′

p, Yp
〉

= σX(Yp) + cσX′(Yp)

so that the map X → σX is linear. An identical argument with c replaced by f shows
that it is C∞(M) linear.

Now given f ∈ C∞(M), df is a one-form. By (iii) of problem 1 above, there is a unique
Xp ∈ Tp(M) so that 〈Xp, Yp〉 = df(Yp) for all Yp ∈ Tp(M). If we can show X is smooth,
then df = σX and grad f := X.

I don’t see any great way to show grad f is smooth except by computing it in local
coordinates: 〈

grad f,
∂

∂xi

〉
= df(

∂

∂xi
) =

∂f

∂xi
.

If gij are the coefficients of the metric 〈·, ·〉 and grad f =
∑

i ai
∂
∂xi

, then〈
grad f,

∂

∂xi

〉
=
∑
j

ajgij

so that

aj =
∑
i

∂f

∂xi
gij

where gij is the inverse of the matrix gij . Thus ai is smooth, and so grad f is smooth.

It’s worth noting that if ∂
∂xi

are orthonormal, then g is the identity matrix and X =

( ∂f
∂x1

, . . . , ∂f
∂xm

).

1. Given c(u) = (r(u), z(u)) a smooth curve in the x-z plane with r(u) 6= 0, let M ⊂ R3 be the
surface of revolution of c around the z-axis. Find the metric g on M as a submanifold of R3.



Solution: Parameterize by (u, θ) with x = r(u) cos θ, y = r(u) sin θ, z = z(u). Then

dx = r′(u) cos θdu− r(u) sin θdθ (5)

dx = r′(u) sin θdu+ r(u) cos θdθ (6)

dz = z′(u)du (7)

Then

dx2 + dy2 + dz2 = (r′(u)2 + z′(u)2)du2 + r(u)2dθ2 = |c′(u)|2du2 + r(u)2dθ2.

• Boothby pg 192 # 2 (the metric on the torus in R3) You might apply the previous problem.

Solution: This is the surface of revolution of the curve c(ϕ) = (a+b cosϕ, b sinϕ) around
the z-axis. Applying the previous problem, the metric is

b2dϕ2 + (a+ b cosϕ)2dθ2.


