Week 3 Exercises

(Corrected problem 2, added #4.)

- 1. Let $\omega = \frac{1}{x^2+y^2}(-ydx+xdy)$ on $M = \mathbb{R}^2 \{0\}$. Let $\theta \in (a, 2\pi + a), r \in (0, \infty)$, and R be the ray from the origin at angle a. Then (r, θ) give polar coordinates on $\mathbb{R}^2 R$.
 - (a) Show that $\omega = d\theta$ on $\mathbb{R}^2 R$.
 - (b) Let γ be the closed curve $\gamma(t) = (\cos(t), \sin(t))$ for $t \in [0, 2\pi]$. Compute $\int_{\gamma} \omega$.
 - (c) Is ω exact? Is ω conservative? Is ω locally conservative?
- 2. Let σ be a locally conservative 1-form on $M = \mathbb{R}^2 \{0\}$.
 - (a) Show that σ is exact if and only if $\int_c \sigma = 0$, where c is the curve that goes around the unit circle once, clockwise.
 - (b) Show that any locally conservative one-form σ on $\mathbb{R}^2 \{0\}$ can be written as $\sigma = \lambda \omega + df$, where ω is as in problem 1, $\lambda \in \mathbb{R}$, and $f \in C^{\infty}(M)$.
- 3. Consider the two dimensional torus $M = \mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$, where \mathbb{Z}^2 acts on \mathbb{R}^2 by $(n, m) \cdot (x, y) = (x + n, y + m)$. Define one forms σ and τ on M by $\sigma(v) = dx(\tilde{v}), \tau(v) = dy(\tilde{v})$ for $v \in TM$ and \tilde{v} is any lift of v to $T\mathbb{R}^2$. Show that σ and τ are well defined and locally conservative, but not exact.
- 4. Boothby, Pg. 187 #9: Show that $tr(A^T B)$ defines a symmetric bilinear form on $M_n(\mathbb{R})$.