
Math 642 Week 3 Exercises

(Corrected problem 2, added #4.)

1. Let ω = 1
x2+y2

(−ydx + xdy) on M = R2 − {0}. Let θ ∈ (a, 2π + a), r ∈ (0,∞), and R be the

ray from the origin at angle a. Then (r, θ) give polar coordinates on R2 −R.

(a) Show that ω = dθ on R2 −R.

(b) Let γ be the closed curve γ(t) = (cos(t), sin(t)) for t ∈ [0, 2π]. Compute
∫
γ ω.

(c) Is ω exact? Is ω conservative? Is ω locally conservative?

Solution:

(a) We have x = r cos θ and y = r sin θ. Then

dx = cos θdr − r sin θdθ, dy = sin θdr + r cos θdθ.

Substituting these into the formula for ω shows ω = dθ.

(b) Calculate γ′(t) = (− sin(t), cos(t)) so ω(γ′(t)) = sin2(t) + cos2(t) = 1, so∫
γ
ω =

∫ 2π

0
1dt = 2π.

(c) If ω were conservative, the integral in part (b) would vanish. So ω is not conservative,
and therefore not exact. It is, however, locally conservative since any p ∈ M has a
neighborhood of the form R2 −R and ω = dθ on that neighborhood.

2. Let σ be a locally conservative 1-form on M = R2 − {0}.
(a) Show that σ is exact if and only if

∫
c σ = 0, where c is the curve that goes around the unit

circle once, clockwise.

(b) Show that any locally conservative one-form σ on R2−{0} can be written as σ = λω+df ,
where ω is as in problem 1, λ ∈ R, and f ∈ C∞(M).

Solution:

(a) If σ is exact, then any integral around a closed curve is 0, so
∫
c σ = 0. Now suppse∫

c σ = 0. Let γ be any closed curve in M . Since the fundamental group π1(M) = Z is
generated by c, γ is homotopic to ck for some k. Since σ is locally conservative, line
integrals are homotopy invariant, and∫

γ
σ =

∫
ck
σ = k

∫
c
σ = 0.

Then σ is conservative, and therefore exact.

(b) Let

λ =
1

2π

∫
c
σ.



Then ∫
c
σ − λω =

∫
c
σ − λ

∫
c
ω = 2πλ− λ2π = 0.

Now σ − λω is locally conservative (since both σ and ω are), so by part (a), there is
some f with σ − λω = df , so σ = λω + df .

3. Consider the two dimensional torus M = T2 = R2/Z2, where Z2 acts on R2 by (n,m) · (x, y) =
(x+n, y+m). Define one forms σ and τ on M by σ(v) = dx(ṽ), τ(v) = dy(ṽ) for v ∈ TM and
ṽ is any lift of v to TR2. Show that σ and τ are well defined and locally conservative, but not
exact.

Solution: Let π : R2 → T2 be the projection map. Given v ∈ TpT2, let ṽ ∈ Tp̃R2 be a lift
of v, so Tπ(ṽ) = v. Write ṽ = v1

∂
∂x + v2

∂
∂y , so that σ(v) = v1, τ(v) = v2. Any other lift of

v is related to ṽ by a diffeomorphism g : (x, y)→ (x+ n, y +m) for some m,n ∈ Z. Since
Tg = I, Tg(ṽ) = v1

∂
∂x + v2

∂
∂y ∈ Tg(p̃)R

2, so dx(Tg(ṽ)) = v1 and dy(Tg(ṽ)) = v2, which
shows that σ, τ are well defined. This sort of argument works more generally for a group
action on a manifold. The important fact is that the forms dx and dy are invariant under
the group action.

Next, see that σ, τ are locally conservative. The point here is that in a small neighborhood
of a point, closed curves on T2 lift to closed curves in R2 where dx and dy are exact. For
p ∈ T2, choose p̃ ∈ R2 with π(p̃) = p. There is a neighborhood Ũ of p̃ on which π is a
diffeomorphism (this is true in general for covering maps, here Ũ could be an open ball of
radius 1/2). Let U = π(Ũ). For any closed curve c ⊂ U , c̃(t) = π−1(c(t)) defines a closed
curve in Ũ , and ∫

c
σ =

∫
c̃
dx = 0

since dx is exact on R2. The argument for τ is the same, with dy.

Let c be the curve c(t) = (t, 0) ∈ R2. Since c(t + 1) = (1, 0) · c(t), c defines a closed curve
on T2 for t ∈ [0, 1], and∫

c
σ =

∫ 1

0
σ(c′(t))dt =

∫ 1

0
dx(

∂

∂x
)dt =

∫ 1

0
1dt = 1

which shows that σ is not exact. Use c(t) = (0, t) to show τ is not exact.

4. Boothby, Pg. 187 #9: Show that Φ(A,B) = tr(ATB) defines a symmetric bilinear form on
Mn(R).

Solution: First, Φ is symmetric since

Φ(A,B) = tr(ATB) = tr((ATB)T ) = tr(BTATT ) = tr(BTA) = Φ(B,A).



Next, Φ is linear in the first argument since for matrices A and A′ and scalar c,

Φ(A+ cA′, B) = tr((A+ cA′)TB) = tr(ATB) + c tr(A′B) = Φ(A,B) + cΦ(A′, B).

Linearity in the second argument follows by symmetry. Φ is positive definite. One way to
see this is with matrix entries, where tr(ATA) =

∑
i,j a

2
ij ≥ 0 with equality if and only if A

is the zero matrix. Or, notice that ATA is symmetric, hence has real eigenvalues λ1, . . . , λn
with eigenvectors v1, . . . , vn. Then, using the usual inner product on Rn,〈

ATAvi, vi
〉

= 〈Avi, Avi〉 ≥ 0

while 〈
ATAvi, vi

〉
= 〈λivi, vi〉 = λi 〈vi, vi〉

so that λi = 〈Avi, Avi〉 / 〈vi, vi〉 ≥ 0. Then tr(ATA) = λ1 + · · · + λn ≥ 0 with equality if
and only if all eigenvalues of A are 0, which means A is the zero matrix.


