- Boothby pg. 183 #5: Determine the subset of \mathbb{R}^2 on which $\sigma_1 = x \, dx + y \, dy$ and $\sigma_2 = y \, dx + x \, dy$ are linearly independent and find a frame field dual to σ_1, σ_2 on this set.
- Boothby pg. 183 #6: Show that the restriction of $\sigma = x \, dy y \, dx + z \, dw w \, dz$ from \mathbb{R}^4 to the sphere S^3 is never zero on S^3 .
- Lee Ch 2 Problem 13 (Hessian). Remark: When df = 0, f has a critical point, the 'second derivative test' determines the behavior near the critical point using the eigenvalues of the Hessian. For example, in \mathbb{R}^2 , try the functions $x^2 + y^2$, $x^2 y^2$, $-x^2 y^2$, and xy at the origin.
- Lee Ch 2 Problem 17 (Test for coordinate charts).