Week 2 Exercises

• Boothby pg. 183 #5: Determine the subset of \mathbb{R}^2 on which $\sigma_1 = x \, dx + y \, dy$ and $\sigma_2 = y \, dx + x \, dy$ are linearly independent and find a frame field dual to σ_1, σ_2 on this set.

Solution: They are independent when $\begin{pmatrix} x & y \\ y & x \end{pmatrix}$ is non-singular. The determinant is $x^2 - y^2$, so they are linearly independent on $\{(x, y) | x^2 - y^2 \neq 0\}$. The dual frame field is described by the inverse matrix $\frac{1}{x^2 - y^2} \begin{pmatrix} x & -y \\ -y & x \end{pmatrix}$ and given by $X_1 = (x^2 - y^2)^{-1} \left(x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}\right)$ and $X_2 = (x^2 - y^2)^{-1} \left(-y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}\right)$

• Boothby pg. 183 #6: Show that the restriction of $\sigma = x \, dy - y \, dx + z \, dw - w \, dz$ from \mathbb{R}^4 to the sphere S^3 is never zero on S^3 .

Solution: Let $V = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} + z \frac{\partial}{\partial w} - w \frac{\partial}{\partial z}$. V is a vector field on S^3 , since it is perpendicular to the radial field $R = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z} + w \frac{\partial}{\partial w}$. Then compute $\sigma(V) = x^2 + y^2 + z^2 + w^2 = 1$, so σ never vanishes on S^3 .

• Lee Ch 2 Problem 13 (Hessian). Remark: When df = 0, f has a critical point, the 'second derivative test' determines the behavior near the critical point using the eigenvalues of the Hessian. For example, in \mathbb{R}^2 , try the functions $x^2 + y^2$, $x^2 - y^2$, $-x^2 - y^2$, and xy at the origin.

Solution: Since $df_p = 0$, $X_pYf - Y_pXf = [X, Y]_pf = df_p([X, Y]_p) = 0$. It is apparent that $H(v, w) = X_p(Yf)$ only depends on $v = X_p$, and not the extension vector field X, and is linear in $v = X_p$. Since $X_p(Yf) = Y_p(Xf)$, the Hessian H(v, w) depends only on w and not the extension to Y, and is linear in w.

Suppose $df_p \neq 0$. The claim is that $H(v, w) = X_p(Yf)$ is not well defined - it depends on the choice of Y. Choose $w \in T_pM$ so that $df_p(w) = 1$. Let Y be a vector field on M with $Y_p = w$. Let v and X be arbitrary with $X_p = v$. Let g be any smooth function on M with g(p) = 1. Then gY is another extension of w, and compute:

 $X_{p}(gYf) = (X_{p}g)(Y_{p}f) + g(p)X_{p}Yf = X_{p}g(df(Y_{p})) + X_{p}Yf = X_{p}g + X_{p}Yf.$

So, choosing a g with $X_pg \neq 0$, we see that H(v, w) as defined is dependent on the extension of w to Y.

• Lee Ch 2 Problem 17 (Test for coordinate charts).

Solution: Since $df_1(p), \ldots, df_N(p)$ spans $T_p^*(M)$, we can discard some of the f_i and renumber them so that $df_1(p), \ldots, df_m(p)$ form a basis for $T_p^*(M)$. Let x_1, \ldots, x_m be coordinates in a neighborhood of p, so $\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_m}$ is a basis for $T_p(M)$. Then the matrix $J = \left(df_i(\frac{\partial}{\partial x_j})\right) = \left(\frac{\partial f_i}{\partial x_j}\right)$ is nonsingular, so by the inverse function theorem, there is a neighborhood V of p where $f = (f_1, \ldots, f_m)$ is a diffeomorphism, i.e. a coordinate system on V.