Week 14 Exercises

- 1. For $n \in \mathbb{Z}$, let P_n be the 0-manifold consisting of n points p_1, \ldots, p_n . Suppose $f : P_n \to P_m$ is any map (obviously smooth).
 - (a) Using the natural basis for H^0 describe the matrix $f^*: H^0(P_m) \to H^0(P_n)$.
 - (b) When is f^* injective? When is f^* surjective?
- 2. Suppose M is a manifold with finite fundamental group. Show that $H^1(M) = 0$. Hint: The universal cover \tilde{M} of M is simply connected, and $\pi_1(M)$ is a finite group of diffeomorphisms of \tilde{M} .
- 3. Let $M = S^1$ with coordinate θ , and let t be the coordinate on \mathbb{R} . Define a (not particularly special) one-form on $M \times \mathbb{R}$ by:

$$\omega = t\cos\theta dt + t^2\sin\theta d\theta.$$

With K and s_a as in Lee, Theorem 10.8, check that $(id - \pi^* s_a^*)\omega = (dK - Kd)\omega$.

4. Define the cup product $\cup : H^k(M) \times H^{\ell}(M) \to H^{k+\ell}(M)$ by

$$[\alpha] \cup [\beta] = [\alpha \land \beta].$$

Show \cup is well defined and bilinear.