Week 14 Exercises

- 1. For $n \in \mathbb{Z}$, let P_n be the 0-manifold consisting of n points p_1, \ldots, p_n . Suppose $f : P_n \to P_m$ is any map (obviously smooth).
 - (a) Using the natural basis for H^0 describe the matrix $f^*: H^0(P_m) \to H^0(P_n)$.
 - (b) When is f^* injective? When is f^* surjective?

Solution:

(a) The basis elements for $H^0(P_m)$ are $\delta_1, \ldots, \delta_m$, where $\delta_i(p_j) = \begin{cases} 1, i=j \\ 0, i \neq j \end{cases}$. Then

 $f^*\delta_i = \delta_i \circ f$, which is 1 on points q with $f(q) = p_i$ and 0 otherwise. The matrix for f^* has m columns, and column i has a one in every row j such that $f(p_j) = p_i$, and zeros elsewhere.

- (b) f^* is injective when f is surjective, and f^* is surjective when f is injective.
- 2. Suppose M is a manifold with finite fundamental group. Show that $H^1(M) = 0$. Hint: The universal cover \tilde{M} of M is simply connected, and $\pi_1(M)$ is a finite group of diffeomorphisms of \tilde{M} .

Solution: Let $\Pi : \tilde{M} \to M$ be the universal cover of M. Let $\omega \in \bigwedge^1(M)$ be any closed one-form. Let $\tilde{\omega} = \Pi^* \omega$ be the lift of ω to \tilde{M} .

Now $d\tilde{\omega} = d\Pi^*\omega = \Pi^* d\omega = 0$, so $\tilde{\omega}$ is closed. Since \tilde{M} is simply connected, $H^1(\tilde{M}) = 0$ and so $\tilde{\omega}$ is exact, say $\tilde{\omega} = d\tau$ for some $\tau \in C^{\infty}(\tilde{M})$.

The finite group $\pi_1(M)$ is a group of diffeomorphisms of M. Now let

$$\tilde{\sigma} = \frac{1}{|\pi_1(M)|} \sum_{g \in \pi_1(M)} g^* \tau.$$

We have

$$d\tilde{\sigma} = \frac{1}{|\pi_1(M)|} \sum_{g \in \pi_1(M)} dg^* \tau$$
$$= \frac{1}{|\pi_1(M)|} \sum_{g \in \pi_1(M)} g^* d\tau$$
$$= \frac{1}{|\pi_1(M)|} \sum_{g \in \pi_1(M)} g^* \tilde{\omega} = \tilde{\omega}$$

where the last step uses the fact that $\tilde{\omega}$ is a lift of ω , and is therefore invariant under the action of $\pi_1(M)$.

Then $\tilde{\sigma}$ is invariant under the action of π_1 , and so is a lift of a function $\sigma \in C^{\infty}(M)$. Finally, $\Pi^* d\sigma = d\Pi^* \sigma = d\tilde{\sigma} = \tilde{\omega} = \Pi^* \omega$. Since Π is surjective, Π^* is injective and we get $d\sigma = \omega$, so that ω is exact. This shows every closed one-form is exact, so $H^1(M) = 0$. 3. Let $M = S^1$ with coordinate θ , and let t be the coordinate on \mathbb{R} . Define a (not particularly special) one-form on $M \times \mathbb{R}$ by:

$$\omega = t\cos\theta dt + t^2\sin\theta d\theta.$$

With K and s_a as in Lee, Theorem 10.8, check that $(id - \pi^* s_a^*)\omega = (dK - Kd)\omega$.

Solution: First, $s_a^*\omega = a^2\sin\theta d\theta$, so that

$$(id - \pi^* s_a^*)\omega = t\cos\theta dt + (t^2 - a^2)\sin\theta d\theta.$$

Next, compute $d\omega = 3t \sin \theta dt \wedge d\theta$ and $\iota_{\partial/\partial t} d\omega = 3t \sin \theta d\theta$, and

$$Kd\omega = (-1)^{2-1} \int_{\tau=a}^{t} 3\tau \sin\theta d\theta d\tau = -\frac{3}{2}(t^2 - a^2) \sin\theta d\theta.$$

On the other hand, $\iota_{\partial/\partial t}\omega = t\cos\theta$, so

$$K\omega = (-1)^{1-1} \int_{\tau=a}^{t} \tau \cos \theta d\tau = \frac{1}{2} (t^2 - a^2) \cos \theta,$$

and

$$dK\omega = t\cos\theta dt - \frac{1}{2}(t^2 - a^2)\sin\theta d\theta$$

so in fact, $(id - \pi^* s_a^*)\omega = (dK - Kd)\omega$.

4. Define the cup product $\cup : H^k(M) \times H^{\ell}(M) \to H^{k+\ell}(M)$ by

$$[\alpha] \cup [\beta] = [\alpha \land \beta].$$

Show \cup is well defined and bilinear.

Solution: Suppose $[\alpha'] = [\alpha]$ and $[\beta'] = [\beta]$. Write $\alpha' = \alpha + d\sigma$ and $\beta' = \beta + d\tau$. Since α and β are closed,

$$d(\sigma \wedge \beta) = d\sigma \wedge \beta$$
 and $d(\alpha \wedge \tau) = (-1)^k \alpha \wedge d\tau$

Then

$$\alpha' \wedge \beta' = (\alpha + d\sigma) \wedge (\beta + d\tau)$$

= $\alpha \wedge \beta + d\sigma \wedge \beta + \alpha \wedge d\tau + d\sigma \wedge d\tau$
= $\alpha \wedge \beta + d(\sigma \wedge \beta) + d((-1)^k \alpha \wedge \tau) + d(\sigma \wedge d\tau)$

Then $[\alpha' \wedge \beta'] = [\alpha \wedge \beta]$ and the cup product is well defined. Bilinearity follows trivially from bilinearity of wedge product.