
Math 642 Week 1 Exercises

• Lee, Chapter 2, problem 19.

Solution: The integral curves satisfy x′ = x2, y′ = xy, with initial point (x0, y0). When
x0 = 0, the integral curve is constant. Otherwise, solving the first equation gives x =

1
x−1
0 −t

= x0
1−x0t (and note the second form works even when x0 = 0). Plugging in to the

equation for y′, we need to solve y′

y = x0
1−x0t . This has the solution y = y0

1−x0t = kx where

k = y0
x0

. The integral curve for (x0, y0) lies on the radial line through the origin and
(x0, y0).

Written as a flow,
Φt(x, y) = (1− xt)−1(x, y).

The flow is defined for t ∈ (1/x,∞) when x < 0, for t ∈ (−∞, 1/x) when x > 0, and for
all t when x = 0.

• Lee, Chapter 2, problem 21.

Solution: The integral curves satisfy x′ = −y, y′ = x. These are circles around the
origin. One easy way to see this is:

(x2 + y2)′ = 2xx′ + 2yy′ = −2xy + 2yx = 0

which shows that x2 + y2 is constant and the curves lie on circles.

Another approach: Take the derivative of x′ = y to get x′′ = y′ = −x. This has the
general solution x(t) = a cos(t) + b sin(t). Now a = x(0) = x0, and b = x′(0) = −y0.
Using y = −x′, we have:

x(t) = x0 cos(t)− y0 sin(t), y(t) = x0 sin(t) + y0 cos(t).

Written as a flow:

Φt(x, y) = (x cos(t)− y sin(t), x sin(t) + y cos(t)) =

(
cos(t) − sin(t)
sin(t) cos(t)

)(
x
y

)
.

The flow is defined on all of R2 for all time.

For both 19 and 21, you should sketch the integral curves of X and find the maximal domain of
definition of the flow, DX .

• Lee, Chapter 2, problem 22.

Solution: The vector field ∂
∂θ is complete on S2− (0, 0, 1). It is incomplete on S2− p for

any point p which is not the north or south pole.



• Lee, Chapter 2, problem 25. Hint: If g(t) and h(t) are curves inGL(n,R), what is d
dt(g(t)h(t))?

What is d
dt(g

−1(t))?

Solution: Considering matrix entries, it’s not hard to show (gh)′ = g′h+ gh′, and then
that (g−1)′ = −g−1g′g−1.
In this problem, we want g′ = g2, so carefully multiplying on the left and right by g−1

we get g−1g′g−1 = I, and therefore −(g−1)′ = I, so that g−1 = −tI + g−10 . The integral
curve is given by g(t) = (−tI + g−10 )−1.

Note that for t small, −tI + g−10 is invertible since g0 is. However, −tI + g−10 fails to be
invertible when 1

t is an eigenvalue of g0.

1. (The Homogeneity Lemma) For a connected smooth manifold M , let p 6= q be any two points
in M . Show that there is a diffeomorphism Φ : M →M with Φ(p) = q.

Solution: The main argument runs as follows:

Let c(t) be a embedded smooth curve [0, 1]→M joining p to q. Then c′(t) is a vector field
along the compact image of c. Extend c′ to a compactly supported vector field X on all of
M . Then the flow ϕX(t, p) is complete, c is an integral curve for X, and so ϕX(1, p) = q.
Then Φ(x) = ϕX(1, x) is the required diffeomorphism.

There are two tricky details. The first is producing the curve c, which takes a bit of an
argument, but mainly comes down to the fact that M is locally Euclidean.

The second is extending the vector field. To do this, cover the image of the curve with
pre-compact single-slice charts Ui, so that on Ui, the curve is given by c(t) = (t, 0, 0, . . . , 0).
Since the image of the curve is compact, we can do this with finitely many such charts
U1, . . . , UN . On Ui, define Xi = ∂

∂x1
, which extends c′|Ui . Finally, let U0 = M − c([0, 1]) be

the complement of the curve, and define X0 = 0. Choose a partition of unity ψi subordinate
to the cover U0, U1, . . . , UN and let X(p) =

∑
i ψi(p)Xi(p). Then for p = c(t) in the image

of the curve, ψ0(p) = 0 and

X(p) =

N∑
i=0

ψi(p)Xi(p) =

N∑
i=0

ψi(p)c
′(t) = c′(t)

N∑
i=0

ψi(p) = c′(t).

X is compactly supported since it’s support is contained in the pre-compact set U1∪· · ·∪UN .


