Math 642 Week 1 Exercises

e Lee, Chapter 2, problem 19.

Solution: The integral curves satisfy 2’ = 22,3y’ = zy, with initial point (zg, o). When
xg = 0, the integral curve is constant. Otherwise, solving the first equation gives x =

ﬁ =7 fgo ; (and note the second form works even when zo = 0). Plugging in to the
equation for 3/, we need to solve yg/ =7 fgo ;- This has the solution y = 1}20 ; = kx where

k = Z—g. The integral curve for (xg,yo) lies on the radial line through the origin and
(20, Y0)-
Written as a flow,

q)t(x7y) - (1 - 1’t)71<1‘,y).

The flow is defined for ¢ € (1/x,00) when z < 0, for t € (—o0,1/z) when = > 0, and for
all £ when x = 0.

e Lee, Chapter 2, problem 21.

Solution: The integral curves satisfy ' = —y,3’ = x. These are circles around the
origin. One easy way to see this is:

(22 + %) =222’ + 2yy' = —22y + 2yz =0

which shows that 22 + y? is constant and the curves lie on circles.

Another approach: Take the derivative of 2’ = y to get 2”7 = ¢/ = —x. This has the
general solution z(t) = acos(t) + bsin(t). Now a = x(0) = zp, and b = 2/(0) = —yo.
Using y = —a’/, we have:

x(t) = zg cos(t) — yosin(t), y(t) = zosin(t) + yo cos(t).

(st - m0) ().

Written as a flow:

O (z,y) = (xcos(t) — ysin(t), zsin(t) + y cos(t))

The flow is defined on all of R? for all time.

For both 19 and 21, you should sketch the integral curves of X and find the maximal domain of
definition of the flow, Dx.

e Lee, Chapter 2, problem 22.

Solution: The vector field % is complete on S% — (0,0, 1). It is incomplete on S? — p for
any point p which is not the north or south pole.




e Lee, Chapter 2, problem 25. Hint: If g(¢) and h(t) are curves in GL(n, R), what is %(g(t)h(t))?
What is 4 (g~ 1(t))?

Solution: Considering matrix entries, it’s not hard to show (gh)’ = ¢’h + gh’, and then
that (¢7') = —g7'g'g™".
In this problem, we want ¢’ = g2, so carefully multiplying on the left and right by ¢~

we get g~'g’g™! = I, and therefore —(g') = I, so that g~' = —tI + g;'. The integral

curve is given by g(t) = (—tI + 90_1)_1'

1

Note that for ¢t small, —tI + g, ! is invertible since go is. However, —tI + 9o ! fails to be
invertible when % is an eigenvalue of gg.

1. (The Homogeneity Lemma) For a connected smooth manifold M, let p # ¢ be any two points
in M. Show that there is a diffeomorphism ® : M — M with ®(p) = q.

Solution: The main argument runs as follows:

Let ¢(t) be a embedded smooth curve [0, 1] — M joining p to q. Then ¢/(¢) is a vector field
along the compact image of c. Extend ¢’ to a compactly supported vector field X on all of
M. Then the flow X (,p) is complete, ¢ is an integral curve for X, and so ¢ (1,p) = q.
Then ®(z) = X (1, ) is the required diffeomorphism.

There are two tricky details. The first is producing the curve ¢, which takes a bit of an
argument, but mainly comes down to the fact that M is locally Euclidean.

The second is extending the vector field. To do this, cover the image of the curve with
pre-compact single-slice charts U;, so that on Uj;, the curve is given by ¢(t) = (¢,0,0,...,0).
Since the image of the curve is compact, we can do this with finitely many such charts
Uy,...,Un. On U;, define X; = 8%17 which extends |y,. Finally, let Uy = M — ¢([0,1]) be
the complement of the curve, and define Xy = 0. Choose a partition of unity v; subordinate
to the cover Uy, Uy, ...,Un and let X (p) = >, ¢i(p)Xi(p). Then for p = ¢(t) in the image
of the curve, ¥o(p) = 0 and

N N N
X(p) =Y i) Xi(p) = D> _hilp)d(t) = (1) Y _i(p) = ' (#).
1=0 1=0 =0

X is compactly supported since it’s support is contained in the pre-compact set Uy U- - -UUn .




