- 1. \mathbb{Z} acts freely and properly on $\mathbb{R}^n \{\mathbf{0}\}$ by $n \cdot \mathbf{v} = e^n \mathbf{v}$. When n = 2, show that the quotient manifold is diffeomorphic to the torus \mathbb{T}^2 . Can you identify the quotient manifold for n > 2?
- 2. Let $S^3 = \{(z_1, z_2) \in \mathbb{C}^2 | |z_1|^2 + |z_2|^2 = 1\}$. For a given θ , rotation by θ in the first coordinate is $(z_1, z_2) \to (e^{i\theta}z_1, z_2)$. Stereographic projection from (1, 0) takes (x+iy, z+iw) to $(Y, Z, W) = \frac{1}{1-x}(y, z, w)$. Show that rotation by θ (as above) maps the plane Y = 0 to the sphere with center (cot $\theta, 0, 0$) and radius csc θ .

(This is basically a trigonometry exercise.)