- - 1. Let M be the configuration space of two distinct points on the circle. Identify this with a well known 2-manifold.
	- 2. Identify $\mathbb{R}P^1$ with a well known 1-manifold and give a diffeomorphism.
	- 3. (Lee Exercise 1.46) Show that $\mathbb{C}P^1$ is diffeomorphic to S^2 .
	- 4. Suppose M is a smooth manifold and $f : M \to \mathbb{R}$ is continuous. Prove for any $\varepsilon > 0$ there is a C^{∞} function $g : M \to \mathbb{R}$ such that $|f(x) - g(x)| < \varepsilon$ for all $x \in M$.

Hint: Use the Stone-Weierstrauss theorem: If $K \subset \mathbb{R}^n$ is compact and $f : K \to \mathbb{R}$ is continuous, then for all $\varepsilon > 0$ there is a polynomial g such that $|f(x) - g(x)| < \varepsilon$ for all $x \in K$.

Solution: Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be a locally finite open cover of M so that each U_{α} has compact closure contained in a chart $(V_{\alpha}, \psi_{\alpha})$. To get such a cover, take a chart (V_p, ψ_p) for each $p \in M$, choose $B_p \subset V_p$ an open neighborhood of p with compact closure $\overline{B_p} \subset V_p$, and then apply paracompactness to the open cover ${B_p}_{p \in M}$.

Let $\{\varphi_{\alpha}\}_{{\alpha}\in A}$ be a partition of unity subordinate to $\{U_{\alpha}\}.$

Fix $\epsilon > 0$ and any $\alpha \in A$. Now $f \circ \psi_{\alpha}^{-1} : V_{\alpha} \to \mathbb{R}$ is continuous, so Stone-Weierstrauss gives a smooth function (polynomial, actually) $f_{\alpha}: V_{\alpha} \to \mathbb{R}$ so that $|f \circ \psi_{\alpha}^{-1}(x) - f_{\alpha}(x)| < \epsilon$ for all $x \in \psi(\bar{U}_{\alpha})$.

Let $g_{\alpha}: M \to \mathbb{R}$ be $g_{\alpha}(p) = \varphi_{\alpha}(p) \cdot f_{\alpha}(\psi_{\alpha}(p))$ for $p \in V_{\alpha}$, and $g_{\alpha}(p) = 0$ otherwise. The function g_{α} is smooth, since it is smooth on V_{α} and any $p \in M - V_{\alpha}$ has a neighborhood on which g_{α} is identically zero. Also, the support of g_{α} is contained in U_{α} .

Define the smooth function $g(p) = \sum_{\alpha \in A} g_{\alpha}(p)$, which is a finite sum for any $p \in M$ by the local finiteness of $\{U_{\alpha}\}.$

Finally, for any p ,

$$
|f(p) - g(p)| = |f - \sum_{\alpha} g_{\alpha}(p)|
$$

$$
= \left| \sum_{\alpha} \varphi_{\alpha}(p) f(p) - \sum_{\alpha} \varphi_{\alpha}(p) \cdot f_{\alpha}(\psi_{\alpha}(p)) \right|
$$

$$
\leq \sum_{\alpha} \varphi_{\alpha}(p) |f(p) - f_{\alpha}(\psi_{\alpha}(p))|
$$

$$
< \sum_{\alpha} \varphi_{\alpha}(p) \epsilon
$$

$$
= \epsilon
$$

5. Let \mathbb{T}^2 be the 2-torus, given as $\mathbb{T}^2 = \{ (e^{i\theta}, e^{i\phi}) \in \mathbb{C}^2 | \theta, \phi \in \mathbb{R} \}$. For real numbers α, β , there is an action of $\mathbb R$ on $\mathbb T^2$ given by:

$$
t \cdot (e^{i\theta}, e^{i\phi}) = (e^{i(\theta + t\alpha)}, e^{i(\phi + t\beta)}).
$$

For which α, β is the quotient space $C = \mathbb{R} \backslash \mathbb{T}^2$ Hausdorff? (Bonus: When C is Hausdorff, what is C?)

6. (Lee Ch 1 Exercise 14) The definition of a Lens space.