- 1. Prove Lee Proposition 2.76 (the Jacobi identity and two other basic facts about Lie bracket)
- 2. Given a unit vector \mathbf{u} in \mathbb{R}^3 , let $X_{\mathbf{u}}$ be the clockwise rotation field for \mathbf{u} . Compute $[X_{\mathbf{u}}, X_{\mathbf{v}}]$ for unit vectors \mathbf{u}, \mathbf{v} . For $\mathbf{x} \in S^2 \subset \mathbb{R}^2$, the field is given by the cross product $X_{\mathbf{u}}(\mathbf{x}) = \mathbf{u} \times \mathbf{x}$. Note that in the usual spherical parameterization $(\theta, \varphi) \to (\cos(\theta) \cos(\phi), \sin(\theta) \cos(\phi), \sin(\phi))$, the field $X_{\mathbf{k}} = \frac{\partial}{\partial \theta}$.
- 3. Let $\sigma(t) = r \cos(t) \mathbf{i} + r \sin(t) \mathbf{j} + t \mathbf{k}$ be a helix with radius r. Find the value of r which maximizes the curvature of σ .
- 4. Let $\sigma(t) = e^t \cos(t)\mathbf{i} + e^t \sin(t)\mathbf{j}$ for t any real number. Reparameterize σ by the arclength parameter s, and compute the length of σ for t from $-\infty$ to 0. This is a curve which spirals infinitely many times around the origin but has only finite length.