- 1. Lee Exercise 3.10: Steiner's Roman surface as an immersion of $\mathbb{R}P^2$ into \mathbb{R}^3 and an embedding into \mathbb{R}^4 . Beware that in the definitions of f and g, Lee is assuming $(x, y, z) \in S^2$, i.e. $x^2 + y^2 + z^2 = 1$.
- 2. When do $\mathbb{R}^k \times \{0\}$ and $\{0\} \times \mathbb{R}^\ell$ intersect transversally in \mathbb{R}^n ?
- 3. Let V be a vector space, and let Δ be the diagonal of $V \times V$. For a linear map $A : V \to V$, let $\Gamma = \{(v, Av) | v \in V\}$ be the graph of A. Show that Γ intersects Δ transversally if and only if 1 is not an eigenvalue of A.
- 4. Suppose M_1 and M_2 are regular submanifolds of N which intersect transversally. Show $M_1 \cap M_2$ is a submanifold of N. What is its dimension?
- 5. Lee Exercise 2.29: Transversality of composed maps. There is a typo in the problem statement, which should read: $f \pitchfork g^{-1}(W)$ if and only if $(g \circ f) \pitchfork W$.