
Math 641 Week 12 Exercises

1. Lee Exercise 3.10: Steiner’s Roman surface as an immersion of RP 2 into R3 and an embedding
into R4. Beware that in the definitions of f and g, Lee is assuming (x, y, z) ∈ S2, i.e. x2 + y2 +
z2 = 1.

Solution:

(a) To get a map RP 2 → R3, define f([x : y : z]) = (x2 + y2 + z2)−1(yz, xz, xy). RP 2 is
covered by three charts, corresponding to x 6= 0, y 6= 0, and z 6= 0.

When x 6= 0, we have coordinates (y, z)→ [1 : y : z], and

f([1 : y : z]) = (1 + y2 + z2)−1(yz, z, y).

Compute

Tf = (1 + y2 + z2)−2

 −y2z + z3 + z y3 − yz2 + y
−2yz y2 − z2 + 1

−y2 + z2 + 1 −2yz


The determinant of the bottom two rows is (after a bit of simplification) y2+z2−1

(y2+z2+1)3
,

so Tf has rank 2 unless y2 + z2− 1 = 0. Assuming this, y2 + z2 = 1 and Tf simplifies
to

Tf =
1

2

 z3 y3

−yz y2

z2 −yz


The determinant of the top two rows of this matrix is z3y2 +y4z = zy2(z2 +y2) = zy2,
so Tf has rank 2 unless y2 + z2 = 1 and zy2 = 0. This gives (y, z) = (±1, 0) and
(y, z) = (0,±1) as points where Tf may have rank less than 2, and it is easy to see
that at these four points Tf actually has rank 1.

In this chart, where x = 1, we have four points where f fails to be an immersion:
[1 : ±1 : 0] and [1 : 0 : ±1]. Similarly, when y = 1 we find f fails to be an immersion
at the four points [±1 : 1 : 0] and [0 : 1 : ±1], and when z = 1 at the four points
[±1 : 0 : 1], [0 : ±1 : 1]. These points are equal in pairs, and so f is an immersion
except at the six points

[1 : 0 : 1], [1 : 1 : 0], [0 : 1 : 1], [1 : 0 : −1], [−1 : 1 : 0], [0 : −1 : 1]

(b) Write g([x, y, z]) = (f([x : y : z]), h([x : y : z])), where h([x, y, z]) = (x2 + y2 +
z2)−1(ax2 + by2 + cz2). The problem specified a = 1, b = 2, c = 3 but we treat
the general case to avoid differences among the three charts. Since Tf has rank two
everywhere but the six exceptional points, Tg will be rank two except possibly at those
points. In the chart [1 : y : z], compute

∂h

∂y
=

2y(b− a+ (b− c)z2)
(1 + y2 + z2)2

,
∂h

∂z
=

2z(c− a+ (c− b)y2)
(1 + y2 + z2)2

.

Then

Tg[1:0:±1] =
1

2


±1 0
0 0
1 0
0 ±(c− a)

 , T g[1:±1:0] =
1

2


0 ±1
0 1
0 0

±(b− a) 0





These have rank 2 as long as a, b, c are distinct. By symmetry among the charts, Tg
has rank 2 at all six exceptional points, and therefore g is an immersion.

To show g is injective, restrict to S2, where x2 + y2 + z2 = 1, and g = (f1, f2, f3, h) =
(yz, xz, xy, ax2 + by2 + cz2).

If none of f1, f2, f3 are zero, then x, y, and z are uniquely determined (up to sign) by g,

since x2 = (xy)(xz)
(yz) and similarly for y2, z2. Changing the sign of any one or two of x, y, z

changes the value of g, so when f1, f2, f3 are all nonzero, [x : y : z] = [−x : −y : −z] is
determined by g([x : y : z]).

It is not possible for just one of f1, f2, f3 to vanish.

Suppose exactly two of f1, f2, f3 vanish, say f3 6= 0. Then x = 0, and y, z are given
by solving yz = f3 and y2 + z2 = 1. This is an intersection of a hyperbola and the
unit circle, and it has four solutions of the form ±(y, z),±(z, y). Then the possible
preimages of (0, 0, f3, h) are [0 : y : z] and [0 : z : y], and the value of h distinguishes
these.

Finally, if f1 = f2 = f3 = 0, then two of x, y, z must vanish and the third must equal
±1. Then h will be a, b, or c depending on which of x, y, z is nonzero.

Since g is an injective immersion, and RP 2 is compact, g is an embedding.

2. When do Rk × {0} and {0} × R` intersect transversally in Rn?

Solution: The tangent space to Rk × {0} has basis ∂
∂x1

, . . . , ∂
∂xk

. The tangent space to

{0} × R` has basis ∂
∂xn−`+1

, . . . , ∂
∂xn

. Together, these span the tangent space to Rn as long

as n− `+ 1 ≤ k + 1, or k + ` ≥ n. So Rk × {0} t {0} × R` if and only if k + ` ≥ n.

3. Let V be a vector space, and let ∆ be the diagonal of V × V . For a linear map A : V → V , let
Γ = {(v,Av)|v ∈ V } be the graph of A. Show that Γ intersects ∆ transversally if and only if 1
is not an eigenvalue of A.

Solution: Identify T∆ with ∆ and TΓ with Γ (since these are vector spaces). Then ∆ t Γ
if and only if ∆ + Γ = V × V . If dimV = n, ∆ is an n-dimensional subspace of V × V ,
and so is Γ. Then ∆ + Γ = V × V if and only if ∆ ∩ Γ = {0}. Finally, 0 6= v ∈ ∆ ∩ Γ, iff
(v, v) = (v,Av), iff Av = v, iff 1 is an eigenvalue of A.

4. Suppose M1 and M2 are regular submanifolds of N which intersect transversally. Show M1∩M2

is a submanifold of N . What is its dimension?

Solution: Let ι be the inclusion map M1 → N . Then ι t M2, so ι−1M2 is a submanifold
of M1. Since ι−1(M2) = M1 ∩M2, M1 ∩M2 is a submanifold of M1 and therefore of N .

If Mi has codimension ki, then M1 ∩M2 has codimension k1 + k2 in N .



5. Lee Exercise 2.29: Transversality of composed maps. There is a typo in the problem statement,
which should read: f t g−1(W ) if and only if (g ◦ f) tW .

Solution: I’ll use better names for the manifolds involved. We have f : X → Y , g :
Y → Z, and W a regular submanifold of Z. We know g(Y ) t W , and want to show
f t g−1(W ) ⇐⇒ (g ◦ f) tW .

=⇒ : Let z ∈ (g ◦ f)(X) ∩W , let x ∈ X with g(f(x)) = z, and y = f(x).

Fix c ∈ TzZ. Since W t g(Y ), we can write write c = w + Tg(v) for w ∈ TzW and
v ∈ TyY . Since f t g−1(W ), we can write v = v′ + Tf(u) with v′ ∈ Ty(g−1(W ))
and u ∈ TxX. Let w′ = Tg(v′) ∈ TzW . Finally

T (g ◦ f)(u) + w′ + w = Tg(Tf(u) + v′) + w = Tg(v) + w = c.

This shows that TzZ = T (g ◦ f)(TxX) + TzW and therefore (g ◦ f) tW .

⇐= : Let y ∈ f(X) ∩ g−1(W ), let x ∈ X with f(x) = y, and z = g(y).

Fix b ∈ TyY , and let c = Tg(b). Since (g◦f) tW , we can write c = T (g◦f)(u)+w,
with u ∈ TxX and w ∈ TzW . Let v = b− Tf(u). Then

Tg(v) = Tg(b)− Tg(Tf(u)) = c− (c−w) = w.

Since g(Y ) t W , Theorem 2.47 in Lee says that Ty(g−1(W )) = (Tg)−1(TzW ), so
v ∈ Ty(g−1(W )). Since b = v + Tf(u), we have shown that TyY = Ty(g−1(W )) +
Tf(TxX), and so f t g−1(W ).

Note that (for me, anyway) everything in this proof was routine, since at each moment
there is really only one thing you can possibly do. However, in the second part, the fact
that Tg(v) ∈ TW =⇒ v ∈ T (g−1(W )) stumped me for over an hour, until I realized it
was the content of Theorem 2.47. That’s why it’s a Theorem!

Here’s another way to do the =⇒ part which avoids working with individual vectors:
With x, y, z as above, f t g−1(W )) implies

TyY = Tf(TxX) + Ty(g−1(W )).

Apply Tg to both sides to get:

Tg(TyY ) = T (g ◦ f)(TxX) + Tg(Ty(g−1(W ))).

Addd TzW to both sides:

Tg(TyY ) + TzW = T (g ◦ f)(TxX) + Tg(Ty(g−1(W ))) + TzW.

Now g tW , so the left hand side is TzZ. Also Tg(Ty(g−1(W ))) ⊂ TzW , so:

TzZ = T (g ◦ f)(TxX) + TzW

and therefore (g ◦ f) tW .


