- 1. Lee Exercise 3.6: Show that every injective immersion of a compact manifold is an embedding.
- 2. Show that any two loops in \mathbb{R}^3 can be nudged away from each other. More precisely: Given smooth maps $f: S^1 \to \mathbb{R}^3$ and $g: S^1 \to \mathbb{R}^3$, show that for any $\delta > 0$ there is a vector $\mathbf{v} \in \mathbb{R}^3$ with $||\mathbf{v}|| < \delta$ so that the sets $\{f(x)\}_{x \in S^1}$ and $\{g(x) + \mathbf{v}\}_{x \in S^1}$ are disjoint.
- 3. Let M be any (paracompact) manifold which is not second countable. For example, M could be an uncountable disjoint union of circles. Show there is no embedding $M \to \mathbb{R}^n$ for any n, so the Whitney embedding theorem fails.