- 1. Lee Exercise 1.118. Given smooth $f : \mathbb{R}^n \to \mathbb{R}^m$, show the graph of f is a regular submanifold of $\mathbb{R}^m \times \mathbb{R}^n$.
- 2. Lee Exercise 1.119. The main point of this exercise is to show that every regular submanifold M of \mathbb{R}^n is locally the graph of a function.
- 3. For a real number a, define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = x^3 3ax y^2$. Find all values of b so that $f^{-1}(b)$ is a manifold. Graph $f^{-1}(b)$ for a variety of a and b, including the critical values of b. These manifolds are called elliptic curves.
- 4. Lee Ch 3 Problem 28. For a homogeneous polynomial p of n variables, show $p^{-1}(c)$ is a submanifold of \mathbb{R}^n for all $c \neq 0$.
- 5. Lee Ch 3 Problem 3. Show if M is compact and N is connected, then a submersion $f: M \to N$ must be surjective.
- 6. Define the map $H : \mathbb{R}^4 \to \mathbb{R}^3$ by

$$H(x, y, z, w) = (2(xy + zw), 2(xw - yz), x^{2} + z^{2} - y^{2} - w^{2}).$$

Check that restricting H to $S^3 \subset \mathbb{R}^4$ defines a map from S^3 to S^2 , the Hopf map. Show that the Hopf map is a submersion. What are the fibers of the Hopf map (i.e. what manifold is $f^{-1}(q)$ for $q \in S^2$)?