1. Let $f : \mathbb{R} \to \mathbb{R}$ be any smooth function, and define $X = f(y) \frac{\partial}{\partial x}$ a vector field on \mathbb{R}^2 . Find the flow for X .

Solution: Need $\varphi_t(x, y) = (x(t), y(t))$ with $x'(t) = f(y(t)), y'(t) = 0, x(0) = x_0$ and $y(0) = y_0$. This has solution $y(t) = y_0$ and $x(t) = x_0 + f(y_0)t$. So $\varphi_t(x, y) = (x + f(y)t, y)$.

2. Let $f: M \to N$ and $g: L \to M$ be smooth maps of manifolds. For a tensor $\tau \in \mathcal{T}^r(N)$, show that $(f \circ g)^* \tau = g^*(f^*\tau)$.

Solution: Let X_1, \ldots, X_r be vectors in $T_p(L)$. Then $(f \circ g)^*\tau(X_1,\ldots,X_n) = \tau(T(f \circ g)X_1,\ldots,T(f \circ g)X_r)$ $=\tau(Tf(Tg(X_1)),\ldots,Tf(Tg(X_r)))$ $= (f^*\tau)(Tg(X_1), \ldots, Tg(X_r))$ $=(g^*(f^*\tau))(X_1,\ldots,X_r).$

So $(f \circ g)^* \tau = g^*(f^* \tau)$.

3. Given $f \in C^{\infty}(M)$, define $\tau_f(X, Y) = XYf$ for $X, Y \in \mathfrak{X}(M)$. Show that τ_f is bilinear in X and Y. Is τ_f a tensor field?

Solution: Suppose $X, X_1, X_2, Y, Y_1, Y_2 \in \mathfrak{X}(M)$ and $c \in \mathbb{R}$. Then $\tau_f(X_1 + cX_2, Y) = (X_1 + cX_2)Yf = X_1Yf + cX_2Yf = \tau_f(X_1, Y) + c\tau_f(X_2, Y)$

and

$$
\tau_f(X, Y_1 + cY_2) = X(Y_1 + cY_2)f = XY_1f + cXY_2f = \tau_f(X, Y_1) + c\tau_f(X, Y_2).
$$

So τ_f is bilinear. But if $\phi \in C^{\infty}(M)$, we have:

$$
\tau_f(X, \phi Y) = X(\phi Y)f = (X\phi)(Yf) + \phi XYf = \phi \tau_f(X, Y) + (X\phi)(Yf).
$$

For τ_f to define a tensor, we must have $(X\phi)(Yf) = 0$ for all X, Y and ϕ . One can choose X and ϕ so that $X\phi$ is nonzero at any particular point of M (for example, $X = \frac{\partial}{\partial x}$ and $\phi = x$ in some local coordinate system). Then we must have $Y f \equiv 0$ for all Y. This only happens if f is a constant function, and in that case $\tau_f \equiv 0$ is the zero tensor. If f is not constant, τ_f does not define a tensor.

4. If you rescale a Riemannian metric, what effect does this have on distances between points?

A Riemannian manifold (M, g) has a metric d giving the distance between any two points in M. For $\lambda > 0$, λg is a Riemannian metric on M, and say $(M, \lambda g)$ has metric d_{λ} . Express $d_{\lambda}(x, y)$ in terms of $d(x, y)$ and λ .

Solution: For any curve $\gamma : [a, b] \to M$ which joins x and y, we have

$$
\text{len}_{\lambda g}(\gamma) = \int_a^b \sqrt{\lambda g(\gamma'(t), \gamma'(t))} dt = \sqrt{\lambda} \int_a^b \sqrt{g(\gamma'(t), \gamma'(t))} dt = \sqrt{\lambda} \text{len}_g(\gamma)
$$

So the distance $d_{\lambda}(x, y) = \inf_{\gamma} \text{len}_{\lambda g}(\gamma) = \sqrt{\lambda} \inf_{\gamma} \text{len}_{g}(\gamma) = \sqrt{\lambda} d(x, y)$.

5. Let M be an m-manifold, and $x \in M$. Show there is a Riemannian metric q on M and a neighborhood U of x so that $(U, g|_U)$ is isometric to a subset of \mathbb{R}^n with the Euclidean metric.

Solution: Let (V, φ) be a chart containing x, and let U be a neighborhood of x with $U \subset V$. Choose a cutoff function $f: V \to \mathbb{R}$ with $0 \leq f \leq 1$, f supported on V, and $f \equiv 1$ on U. Let h be any metric on M and let e be the pullback by φ of the Euclidean metric on $\varphi(V)$. Put $g = fe + (1-f)h$. Then $g|_U = e$ is isometric to the Euclidean metric as desired. Since e and h are symmetric two tensors, so is g. To see g is a metric, check it is positive definite. Off of V, $g \equiv h$ so g is positive definite since h is. For $p \in V$, let $0 \neq X \in T_p(M)$, and put $\epsilon = \min(e(X, X), h(X, X)) > 0$. Then

$$
g_p(X, X) = f(p)e(X, X) + (1 - f(p))h(X, X) \ge f(p)\epsilon + (1 - f(p))\epsilon = \epsilon > 0,
$$

which shows q is a Riemannian metric.

6. Define the one-form

$$
\tau = xdy - ydx + zdw - wdz
$$

on the sphere $S^3 = \{(x, y, z, w)|x^2 + y^2 + z^2 + w^2 = 1\} \subset \mathbb{R}^4$. Fix $a, b \in \mathbb{R}$ with $a^2 + b^2 = 1$. For $t \in [0, 2\pi]$ define a curve $\gamma(t) = (a \cos t, a \sin t, b \cos t, b \sin t) \subset S^3$.

Compute
$$
\int_{\gamma} \tau
$$
.

Bonus generalization(optional, only slightly harder):

If
$$
a, b \in \mathbb{C}
$$
 with $|a|^2 + |b|^2 = 1$ then $\gamma(t) = e^{it}(a, b)$ is a circle in $S^3 \subset \mathbb{C}^2$. Compute $\int_{\gamma} \tau$.

Solution: From the curve, $x = a \cos t$ so $dx = -a \sin t dt$, $y = a \sin t$ so $dy = a \cos t dt$, and similarly for z, w . Then

$$
\int_{\gamma} \tau = \int_0^{2\pi} a^2 \cos^2 t + a^2 \sin^2 t + b^2 \cos^2 t + b^2 \sin^2 t dt = \int_0^{2\pi} a^2 + b^2 dt = \int_0^{2\pi} 1 dt = 2\pi.
$$

The bonus generalization also gives 2π .