1. Let $f: \mathbb{R} \to \mathbb{R}$ be any smooth function, and define $X = f(y) \frac{\partial}{\partial x}$ a vector field on \mathbb{R}^2 . Find the flow for X.

Solution: Need
$$\varphi_t(x,y)=(x(t),y(t))$$
 with $x'(t)=f(y(t)),\ y'(t)=0,\ x(0)=x_0$ and $y(0)=y_0$. This has solution $y(t)=y_0$ and $x(t)=x_0+f(y_0)t$. So $\varphi_t(x,y)=(x+f(y)t,y)$.

2. Let $f: M \to N$ and $g: L \to M$ be smooth maps of manifolds. For a tensor $\tau \in \mathcal{T}^r(N)$, show that $(f \circ g)^*\tau = g^*(f^*\tau)$.

Solution: Let X_1, \ldots, X_r be vectors in $T_p(L)$. Then $(f \circ g)^* \tau(X_1, \ldots, X_n) = \tau(T(f \circ g)X_1, \ldots, T(f \circ g)X_r)$ $= \tau(Tf(Tg(X_1)), \ldots, Tf(Tg(X_r)))$ $= (f^*\tau)(Tg(X_1), \ldots, Tg(X_r))$ $= (g^*(f^*\tau))(X_1, \ldots, X_r).$ So $(f \circ g)^*\tau = g^*(f^*\tau)$.

3. Given $f \in C^{\infty}(M)$, define $\tau_f(X,Y) = XYf$ for $X,Y \in \mathfrak{X}(M)$. Show that τ_f is bilinear in X and Y. Is τ_f a tensor field?

Solution: Suppose $X, X_1, X_2, Y, Y_1, Y_2 \in \mathfrak{X}(M)$ and $c \in \mathbb{R}$. Then

$$\tau_f(X_1 + cX_2, Y) = (X_1 + cX_2)Yf = X_1Yf + cX_2Yf = \tau_f(X_1, Y) + c\tau_f(X_2, Y)$$

and

$$\tau_f(X, Y_1 + cY_2) = X(Y_1 + cY_2)f = XY_1f + cXY_2f = \tau_f(X, Y_1) + c\tau_f(X, Y_2).$$

So τ_f is bilinear. But if $\phi \in C^{\infty}(M)$, we have:

$$\tau_f(X,\phi Y) = X(\phi Y)f = (X\phi)(Yf) + \phi XYf = \phi \tau_f(X,Y) + (X\phi)(Yf).$$

For τ_f to define a tensor, we must have $(X\phi)(Yf)=0$ for all X,Y and ϕ . One can choose X and ϕ so that $X\phi$ is nonzero at any particular point of M (for example, $X=\frac{\partial}{\partial x}$ and $\phi=x$ in some local coordinate system). Then we must have $Yf\equiv 0$ for all Y. This only happens if f is a constant function, and in that case $\tau_f\equiv 0$ is the zero tensor. If f is not constant, τ_f does not define a tensor.

4. If you rescale a Riemannian metric, what effect does this have on distances between points? A Riemannian manifold (M, g) has a metric d giving the distance between any two points in M. For $\lambda > 0$, λg is a Riemannian metric on M, and say $(M, \lambda g)$ has metric d_{λ} . Express $d_{\lambda}(x, y)$ in terms of d(x, y) and λ .

Solution: For any curve $\gamma:[a,b]\to M$ which joins x and y, we have

$$\operatorname{len}_{\lambda g}(\gamma) = \int_{a}^{b} \sqrt{\lambda g(\gamma'(t), \gamma'(t))} dt = \sqrt{\lambda} \int_{a}^{b} \sqrt{g(\gamma'(t), \gamma'(t))} dt = \sqrt{\lambda} \operatorname{len}_{g}(\gamma)$$

So the distance $d_{\lambda}(x,y) = \inf_{\gamma} \operatorname{len}_{\lambda g}(\gamma) = \sqrt{\lambda} \inf_{\gamma} \operatorname{len}_{g}(\gamma) = \sqrt{\lambda} d(x,y)$.

5. Let M be an m-manifold, and $x \in M$. Show there is a Riemannian metric g on M and a neighborhood U of x so that $(U, g|_U)$ is isometric to a subset of \mathbb{R}^n with the Euclidean metric.

Solution: Let (V, φ) be a chart containing x, and let U be a neighborhood of x with $\overline{U} \subset V$. Choose a cutoff function $f: V \to \mathbb{R}$ with $0 \le f \le 1$, f supported on V, and $f \equiv 1$ on U. Let h be any metric on M and let e be the pullback by φ of the Euclidean metric on $\varphi(V)$. Put g = fe + (1 - f)h. Then $g|_{U} = e$ is isometric to the Euclidean metric as desired. Since e and h are symmetric two tensors, so is g. To see g is a metric, check it is positive definite. Off of V, $g \equiv h$ so g is positive definite since h is. For $p \in V$, let $0 \ne X \in T_p(M)$, and put $e = \min(e(X, X), h(X, X)) > 0$. Then

$$g_p(X, X) = f(p)e(X, X) + (1 - f(p))h(X, X) \ge f(p)\epsilon + (1 - f(p))\epsilon = \epsilon > 0,$$

which shows g is a Riemannian metric.

6. Define the one-form

$$\tau = xdy - ydx + zdw - wdz$$

on the sphere $S^3=\{(x,y,z,w)|x^2+y^2+z^2+w^2=1\}\subset\mathbb{R}^4$. Fix $a,b\in\mathbb{R}$ with $a^2+b^2=1$. For $t\in[0,2\pi]$ define a curve $\gamma(t)=(a\cos t,a\sin t,b\cos t,b\sin t)\subset S^3$.

Compute $\int_{\gamma} \tau$.

Bonus generalization(optional, only slightly harder):

If $a, b \in \mathbb{C}$ with $|a|^2 + |b|^2 = 1$ then $\gamma(t) = e^{it}(a, b)$ is a circle in $S^3 \subset \mathbb{C}^2$. Compute $\int_{\gamma} \tau$.

Solution: From the curve, $x = a \cos t$ so $dx = -a \sin t dt$, $y = a \sin t$ so $dy = a \cos t dt$, and similarly for z, w. Then

$$\int_{\gamma} \tau = \int_{0}^{2\pi} a^{2} \cos^{2} t + a^{2} \sin^{2} t + b^{2} \cos^{2} t + b^{2} \sin^{2} t dt = \int_{0}^{2\pi} a^{2} + b^{2} dt = \int_{0}^{2\pi} 1 dt = 2\pi.$$

The bonus generalization also gives 2π .