
Math 642 Final Exam 5/8/13

1. Suppose g1, g2 are Riemannian metrics on M . Show that g = λg1 + (1− λ)g2 is a Riemannian
metric for any λ ∈ [0, 1].

Solution: By linearity, g is a symmetric 2-tensor. We need to show g is positive definite.
If X is a nonzero tangent vector, g1(X,X) > 0 and g2(X,X) > 0 so that

g(X,X) = λg1(X,X) + (1− λ)g2(X,X) > 0

since λ, 1− λ are non-negative and at least one of them is non-zero.

2. Suppose M is orientable. Given a ∈ R, show there is a compactly supported n-form α on M
with

∫
M α = a.

Solution: Let ω be an orientation n-form on M , let (U,ϕ) be any positively oriented
chart, and let ρ ∈ C∞(M) be a bump function with compact support in U . Since (U,ϕ)
is positively oriented, ϕ∗ω = fdx1 ∧ · · · ∧ dxn for some function f > 0. The n-form ρω is
compactly supported on U . Put C =

∫
M ρω. Then

C =

∫
M
ρω =

∫
ϕ(U)

ρ(φ−1(x))f(x)dx > 0.

Put α = a
C ρω, so

∫
M α = a.

3. Let H be Hyperbolic space: the upper half plane {(x, y)|y > 0} with metric ds2 = 1
y2

(
dx2+dy2

)
.

Show that each of these three diffeomorphisms is an isometry:

• (x, y)→ (ax, ay), a > 0.

• (x, y)→ (x+ b, y), b ∈ R.

• (x, y)→ 1
x2+y2

(−x, y).

(These correspond to the Möbius transformations z → az, z → z + b, z → −1/z, and together
generate the group SL2(R)).

Solution:

• 1
y2

(
dx2 + dy2

)
→ 1

(ay)2

(
(d(ax))2 + (d(ay))2

)
= 1

a2y2
a2
(
dx2 + dy2

)
= 1

y2

(
dx2 + dy2

)
• 1

y2

(
dx2 + dy2

)
→ 1

y2

(
(d(x+ b))2 + dy2

)
= 1

y2

(
dx2 + dy2

)
• Compute

d

(
−x

x2 + y2

)
=

(x2 − y2)dx+ 2xydy

(x2 + y2)2
, d

(
y

x2 + y2

)
=

(x2 − y2)dy − 2xydx

(x2 + y2)2



so that

1

y2
(
dx2 + dy2

)
→ (x2 + y2)2

y2

(
(x2 − y2)dx+ 2xydy

)2
+
(
(x2 − y2)dy − 2xydx

)2
(x2 + y2)4

=
1

y2

(
(x2 − y2)2 + 4x2y2

)
(dx2 + dy2)

(x2 + y2)2
=

1

y2
(
dx2 + dy2

)
.

4. Let ω = ydx− xdy ∈ Ω1(R2). Let σ = 1
x2+y2

ω ∈ Ω1(R2 − {0}).
(a) Is ω closed? Is ω exact?

(b) Is σ closed? Is σ exact?

Prove your answers.

Solution:

(a) ω is not closed (and therefore cannot be exact).

Check: dω = dy ∧ dx− dx ∧ dy = −2dx ∧ dy 6= 0.

(b) σ is closed:

dσ = d
y

x2 + y2
∧ dx+ d

−x
x2 + y2

∧ dy

=
(x2 − y2)dy − 2xydx

(x2 + y2)2
∧ dx+

(x2 − y2)dx+ 2xydy

(x2 + y2)2
∧ dy

=
1

(x2 + y2)2
(
(x2 − y2)dy ∧ dx+ (x2 − y2)dx ∧ dy

)
= 0

However, σ is not exact. Consider the curve c(t) = (cos(t), sin(t)) for t ∈ [0, 2π]. Then∫
c
σ =

∫ 2π

0
(sin t)(− sin tdt)− (cos t)(cos tdt) =

∫ 2π

0
−1dt = −2π.

An exact form would have integral 0 around any closed curve.

5. Let α, β be k-forms on a smooth n-manifold M . Let S be a k-dimensional submanifold of M
(without boundary). If [α] = [β] ∈ Hk(M), (i.e. α and β represent the same cohomology class)
then show that ∫

S
α =

∫
S
β

Solution: Write α = β + dτ for some k − 1 form τ . Then applying Stokes’ Theorem,∫
S
α =

∫
S
β + dτ =

∫
S
β +

∫
S
dτ =

∫
S
β +

∫
∂S
τ =

∫
S
β



6. (a) For a smooth compact oriented M with volume form µ, prove∫
M

(DivX)µ =

∫
∂M

ιXµ

for any vector field X on M .

(b) Suppose, additionally, that M has no boundary. Prove that for any vector field X, there
must be a point on M where DivX vanishes.

(c) Give an example of a manifold M and a vector field X where DivX is nowhere zero.

Solution:

(a) ∫
M

(DivX)µ =

∫
M
LXµ

=

∫
M
dιXµ+ ιXdµ (Cartan’s Formula)

=

∫
M
dιXµ (dµ = 0)

=

∫
∂M

ιXµ (Stokes’ Theorem)

(b) From part (a) and ∂M = ∅,
∫
M (DivX)µ = 0. Assume M is connected. Suppose

DivX never vanishes. Since DivX is continuous and M is connected, DivX is strictly
positive or strictly negative on M . Then

∫
M (DivX)µ cannot be zero, a contradiction.

If M is not connected, the above argument shows DivX vanishes on any connected
component of M .

(c) One example is the vector field X = x ∂
∂x on M = R (the radial field on Rn for any n

also works). Here, µ = dx and

LXµ = d(ιXµ) = d(x) = µ

so that DivX ≡ 1.


