1. Suppose g_1, g_2 are Riemannian metrics on M. Show that $g = \lambda g_1 + (1 - \lambda)g_2$ is a Riemannian metric for any $\lambda \in [0, 1]$.

Solution: By linearity, g is a symmetric 2-tensor. We need to show g is positive definite. If X is a nonzero tangent vector, $g_1(X, X) > 0$ and $g_2(X, X) > 0$ so that

$$g(X, X) = \lambda g_1(X, X) + (1 - \lambda)g_2(X, X) > 0$$

since $\lambda, 1 - \lambda$ are non-negative and at least one of them is non-zero.

2. Suppose M is orientable. Given $a \in \mathbb{R}$, show there is a compactly supported n-form α on M with $\int_M \alpha = a$.

Solution: Let ω be an orientation *n*-form on M, let (U, φ) be any positively oriented chart, and let $\rho \in C^{\infty}(M)$ be a bump function with compact support in U. Since (U, φ) is positively oriented, $\varphi^* \omega = f dx^1 \wedge \cdots \wedge dx^n$ for some function f > 0. The *n*-form $\rho \omega$ is compactly supported on U. Put $C = \int_M \rho \omega$. Then

$$C = \int_{M} \rho \omega = \int_{\varphi(U)} \rho(\phi^{-1}(\mathbf{x})) f(\mathbf{x}) d\mathbf{x} > 0.$$

Put $\alpha = \frac{a}{C}\rho\omega$, so $\int_M \alpha = a$.

- 3. Let \mathbb{H} be Hyperbolic space: the upper half plane $\{(x, y)|y > 0\}$ with metric $ds^2 = \frac{1}{y^2} (dx^2 + dy^2)$. Show that each of these three diffeomorphisms is an isometry:
 - $(x,y) \rightarrow (ax,ay), a > 0.$
 - $(x,y) \to (x+b,y), b \in \mathbb{R}.$
 - $(x, y) \to \frac{1}{x^2 + y^2}(-x, y).$

(These correspond to the Möbius transformations $z \to az$, $z \to z + b$, $z \to -1/z$, and together generate the group $SL_2(\mathbb{R})$).

Solution:

•
$$\frac{1}{y^2} (dx^2 + dy^2) \to \frac{1}{(ay)^2} ((d(ax))^2 + (d(ay))^2) = \frac{1}{a^2y^2} a^2 (dx^2 + dy^2) = \frac{1}{y^2} (dx^2 + dy^2)$$

•
$$\frac{1}{y^2}(dx^2 + dy^2) \to \frac{1}{y^2}((d(x+b))^2 + dy^2) = \frac{1}{y^2}(dx^2 + dy^2)$$

• Compute

$$d\left(\frac{-x}{x^2+y^2}\right) = \frac{(x^2-y^2)dx+2xydy}{(x^2+y^2)^2}, \quad d\left(\frac{y}{x^2+y^2}\right) = \frac{(x^2-y^2)dy-2xydx}{(x^2+y^2)^2}$$

so that

$$\frac{1}{y^2} (dx^2 + dy^2) \to \frac{(x^2 + y^2)^2}{y^2} \frac{\left((x^2 - y^2)dx + 2xydy\right)^2 + \left((x^2 - y^2)dy - 2xydx\right)^2}{(x^2 + y^2)^4} \\ = \frac{1}{y^2} \frac{\left((x^2 - y^2)^2 + 4x^2y^2\right)(dx^2 + dy^2)}{(x^2 + y^2)^2} = \frac{1}{y^2} (dx^2 + dy^2).$$

- 4. Let $\omega = ydx xdy \in \Omega^1(\mathbb{R}^2)$. Let $\sigma = \frac{1}{x^2 + y^2}\omega \in \Omega^1(\mathbb{R}^2 \{0\})$.
 - (a) Is ω closed? Is ω exact?
 - (b) Is σ closed? Is σ exact?

Prove your answers.

Solution:

(a) ω is not closed (and therefore cannot be exact).

Check: $d\omega = dy \wedge dx - dx \wedge dy = -2dx \wedge dy \neq 0.$

(b) σ is closed:

$$d\sigma = d\frac{y}{x^2 + y^2} \wedge dx + d\frac{-x}{x^2 + y^2} \wedge dy$$

= $\frac{(x^2 - y^2)dy - 2xydx}{(x^2 + y^2)^2} \wedge dx + \frac{(x^2 - y^2)dx + 2xydy}{(x^2 + y^2)^2} \wedge dy$
= $\frac{1}{(x^2 + y^2)^2} \left((x^2 - y^2)dy \wedge dx + (x^2 - y^2)dx \wedge dy \right)$
= 0

However, σ is not exact. Consider the curve $c(t) = (\cos(t), \sin(t))$ for $t \in [0, 2\pi]$. Then $\int_{0}^{2\pi} \sigma = \int_{0}^{2\pi} (\sin t)(-\sin t dt) - (\cos t)(\cos t dt) = \int_{0}^{2\pi} -1 dt = -2\pi.$

An exact form would have integral 0 around any closed curve.

5. Let α, β be k-forms on a smooth n-manifold M. Let S be a k-dimensional submanifold of M (without boundary). If $[\alpha] = [\beta] \in H^k(M)$, (i.e. α and β represent the same cohomology class) then show that

$$\int_{S} \alpha = \int_{S} \beta$$

Solution: Write $\alpha = \beta + d\tau$ for some k - 1 form τ . Then applying Stokes' Theorem, $\int_{S} \alpha = \int_{S} \beta + d\tau = \int_{S} \beta + \int_{S} d\tau = \int_{S} \beta + \int_{\partial S} \tau = \int_{S} \beta$ 6. (a) For a smooth compact oriented M with volume form μ , prove

$$\int_{M} (\operatorname{Div} X) \mu = \int_{\partial M} \iota_{X} \mu$$

for any vector field X on M.

- (b) Suppose, additionally, that M has no boundary. Prove that for any vector field X, there must be a point on M where Div X vanishes.
- (c) Give an example of a manifold M and a vector field X where Div X is nowhere zero.

Solution:

(a)

$$\int_{M} (\text{Div } X)\mu = \int_{M} \mathcal{L}_{X}\mu$$

$$= \int_{M} d\iota_{X}\mu + \iota_{X}d\mu \qquad (\text{Cartan's Formula})$$

$$= \int_{M} d\iota_{X}\mu \qquad (d\mu = 0)$$

$$= \int_{\partial M} \iota_{X}\mu \qquad (\text{Stokes' Theorem})$$

- (b) From part (a) and $\partial M = \emptyset$, $\int_M (\text{Div } X)\mu = 0$. Assume M is connected. Suppose Div X never vanishes. Since Div X is continuous and M is connected, Div X is strictly positive or strictly negative on M. Then $\int_M (\text{Div } X)\mu$ cannot be zero, a contradiction. If M is not connected, the above argument shows Div X vanishes on any connected component of M.
- (c) One example is the vector field $X = x \frac{\partial}{\partial x}$ on $M = \mathbb{R}$ (the radial field on \mathbb{R}^n for any n also works). Here, $\mu = dx$ and

$$\mathcal{L}_X \mu = d(\iota_X \mu) = d(x) = \mu$$

so that $\operatorname{Div} X \equiv 1$.