- 5/8/13
- 1. Suppose g_1, g_2 are Riemannian metrics on M. Show that $g = \lambda g_1 + (1 \lambda)g_2$ is a Riemannian metric for any $\lambda \in [0, 1]$.
- 2. Suppose M is orientable. Given $a \in \mathbb{R}$, show there is a compactly supported n-form α on M with $\int_M \alpha = a$.
- 3. Let \mathbb{H} be Hyperbolic space: the upper half plane $\{(x, y)|y > 0\}$ with metric $ds^2 = \frac{1}{y^2} (dx^2 + dy^2)$. Show that each of these three diffeomorphisms is an isometry:
 - $(x,y) \rightarrow (ax,ay), a > 0.$
 - $(x, y) \to (x + b, y), b \in \mathbb{R}.$
 - $(x, y) \to \frac{1}{x^2 + y^2}(-x, y).$

(These correspond to the Möbius transformations $z \to az$, $z \to z + b$, $z \to -1/z$, and together generate the group $SL_2(\mathbb{R})$).

- 4. Let $\omega = ydx xdy \in \Omega^1(\mathbb{R}^2)$. Let $\sigma = \frac{1}{x^2 + y^2}\omega \in \Omega^1(\mathbb{R}^2 \{0\})$.
 - (a) Is ω closed? Is ω exact?
 - (b) Is σ closed? Is σ exact?

Prove your answers.

5. Let α, β be k-forms on a smooth n-manifold M. Let S be a k-dimensional submanifold of M (without boundary). If $[\alpha] = [\beta] \in H^k(M)$, (i.e. α and β represent the same cohomology class) then show that

$$\int_{S} \alpha = \int_{S} \beta$$

6. (a) For a smooth compact oriented M with volume form μ , prove

$$\int_{M} (\operatorname{Div} X) \mu = \int_{\partial M} \iota_{X} \mu$$

for any vector field X on M.

- (b) Suppose, additionally, that M has no boundary. Prove that for any vector field X, there must be a point on M where Div X vanishes.
- (c) Give an example of a manifold M and a vector field X where Div X is nowhere zero.