On this exam, M will always be a smooth m-dimensional manifold.

- 1. Give an example of a topological space X which is locally Euclidean but not a manifold. (Define the topology on X and show both claims)
- 2. With $S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$, let $C \subset S^2$ consist of the three circles $z = \frac{1}{2}$, z = 0, $z = -\frac{1}{2}$. Accurately sketch the image of C under stereographic projection from the north pole (0, 0, 1).
- 3. Given smooth functions $f: M \to \mathbb{R}$ and $g: M \to \mathbb{R}$ and distinct points $p, q \in M$, show that there is a smooth function $h: M \to \mathbb{R}$ so that $h \equiv f$ in a neighborhood of p, and $h \equiv g$ in a neighborhood of q.
- 4. Let $\Delta \subset M \times M$ be the diagonal, $\Delta = \{(p, p) | p \in M\}$. Describe charts on Δ that make Δ an *m*-manifold diffeomorphic to M. (You don't need to prove anything, just define the charts).
- 5. Let $f: M \to \mathbb{R}$ be a smooth function, and suppose f takes its maximum value at $p \in M$. For any $X_p \in T_p M$, show that $X_p f = 0$.
- 6. Show that

$$f([x:y]) = \frac{xy}{x^2 + y^2}$$

is well defined as a function $f : \mathbb{R}P^1 \to \mathbb{R}$, where [x : y] are homogenous coordinates on projective space.

Find the maximum of f on $\mathbb{R}P^1$ (you may use problem 5).